Connect with us

Technology

Synthetic Biology: The $3.6 Trillion Science Changing Life as We Know It

Published

on

a graphic outlining the potential opportunities and risks of synthetic biology

Can I share this graphic?
Yes. Visualizations are free to share and post in their original form across the web—even for publishers. Please link back to this page and attribute Visual Capitalist.
When do I need a license?
Licenses are required for some commercial uses, translations, or layout modifications. You can even whitelabel our visualizations. Explore your options.
Interested in this piece?
Click here to license this visualization.

How Synthetic Biology Could Change Life as we Know it

Synthetic biology (synbio) is a field of science that redesigns organisms in an effort to enhance and support human life. According to one projection, this rapidly growing field of science is expected to reach $28.8 billion in global revenue by 2026.

Although it has the potential to transform many aspects of society, things could go horribly wrong if synbio is used for malicious or unethical reasons. This infographic explores the opportunities and potential risks that this budding field of science has to offer.

What is Synthetic Biology?

We’ve covered the basics of synbio in previous work, but as a refresher, here’s a quick explanation of what synbio is and how it works.

Synbio is an area of scientific research that involves editing and redesigning different biological components and systems in various organisms.

It’s like genetic engineering but done at a more granular level—while genetic engineering transfers ready-made genetic material between organisms, synbio can build new genetic material from scratch.

The Opportunities of Synbio

This field of science has a plethora of real-world applications that could transform our everyday lives. A study by McKinsey found over 400 potential uses for synbio, which were broken down into four main categories:

  • Human health and performance
  • Agriculture and food
  • Consumer products and services
  • Materials and energy production

If those potential uses become reality in the coming years, they could have a direct economic impact of up to $3.6 trillion per year by 2030-2040.

1. Human Health and Performance

The medical and health sector is predicted to be significantly influenced by synbio, with an economic impact of up to $1.3 trillion each year by 2030-2040.

Synbio has a wide range of medical applications. For instance, it can be used to manipulate biological pathways in yeast to produce an anti-malaria treatment.

It could also enhance gene therapy. Using synbio techniques, the British biotech company Touchlight Genetics is working on a way to build synthetic DNA without the use of bacteria, which would be a game-changer for the field of gene therapy.

2. Agriculture and Food

Synbio has the potential to make a big splash in the agricultural sector as well—up to $1.2 trillion per year by as early as 2030.

One example of this is synbio’s role in cellular agriculture, which is when meat is created from cells directly. The cost of creating lab-grown meat has decreased significantly in recent years, and because of this, various startups around the world are beginning to develop a variety of cell-based meat products.

3. Consumer Products and Services

Using synthetic biology, products could be tailored to suit an individual’s unique needs. This would be useful in fields such as genetic ancestry testing, gene therapy, and age-related skin procedures.

By 2030-2040, synthetic biology could have an economic impact on consumer products and services to the tune of up to $800 billion per year.

4. Materials and Energy Production

Synbio could also be used to boost efficiency in clean energy and biofuel production. For instance, microalgae are currently being “reprogrammed” to produce clean energy in an economically feasible way.

This, along with other material and energy improvements through synbio methods, could have a direct economic impact of up to $300 billion each year.

The Potential Risks of Synbio

While the potential economic and societal benefits of synthetic biology are vast, there are a number of risks to be aware of as well:

  • Unintended biological consequences: Making tweaks to any biological system can have ripple effects across entire ecosystems or species. When any sort of lifeform is manipulated, things don’t always go according to plan.
  • Moral issues: How far we’re comfortable going with synbio depends on our values. Certain synbio applications, such as embryo editing, are controversial. If these types of applications become mainstream, they could have massive societal implications, with the potential to increase polarization within communities.
  • Unequal access: Innovation and progress in synbio is happening faster in wealthier countries than it is in developing ones. If this trend continues, access to these types of technology may not be equal worldwide. We’ve already witnessed this type of access gap during the rollout of COVID-19 vaccines, where a majority of vaccines have been administered in rich countries.
  • Bioweaponry: Synbio could be used to recreate viruses, or manipulate bacteria to make it more dangerous, if used with ill intent.

According to a group of scientists at the University of Edinburgh, communication between the public, synthetic biologists, and political decision-makers is crucial so that these societal and environmental risks can be mitigated.

Balancing Risk and Reward

Despite the risks involved, innovation in synbio is happening at a rapid pace.

By 2030, most people will have likely eaten, worn, or been treated by a product created by synthetic biology, according to synthetic biologist Christopher A. Voigt.

Our choices today will dictate the future of synbio, and how we navigate through this space will have a massive impact on our future—for better, or for worse.

Click for Comments

Technology

Charting the Next Generation of Internet

In this graphic, Visual Capitalist has partnered with MSCI to explore the potential of satellite internet as the next generation of internet innovation.

Published

on

Teaser image of a bubble chart showing the large addressable market of satellite internet.

Published

on

The following content is sponsored by MSCI

Could Tomorrow’s Internet be Streamed from Space?

In 2023, 2.6 billion people could not access the internet. Today, companies worldwide are looking to innovative technology to ensure more people are online at the speed of today’s technology. 

Could satellite internet provide the solution?  

In collaboration with MSCI, we embarked on a journey to explore whether tomorrow’s internet could be streamed from space. 

Satellite Internet’s Potential Customer Base

Millions of people live in rural communities or mobile homes, and many spend much of their lives at sea or have no fixed abode. So, they cannot access the internet simply because the technology is unavailable. 

Satellite internet gives these communities access to the internet without requiring a fixed location. Consequently, the volume of people who could get online using satellite internet is significant:

AreaPotential Subscribers
Households Without Internet Access600,000,000
RVs 11,000,000
Recreational Boats8,500,000
Ships100,000
Commercial Aircraft25,000

Advances in Satellite Technology

Satellite internet is not a new concept. However, it has only recently been that roadblocks around cost and long turnaround times have been overcome.

NASA’s space shuttle, until it was retired in 2011, was the only reusable means of transporting crew and cargo into orbit. It cost over $1.5 billion and took an average of 252 days to launch and refurbish. 

In stark contrast, SpaceX’s Falcon 9 can now launch objects into orbit and maintain them at a fraction of the time and cost, less than 1% of the space shuttle’s cost.

Average Rocket Turnaround TimeAverage Launch/Refurbishment Cost
Falcon 9*21 days< $1,000,000
Space Shuttle252 days$1,500,000,000 (approximately)

Satellites are now deployed 300 miles in low Earth orbit (LEO) rather than 22,000 miles above Earth in Geostationary Orbit (GEO), previously the typical satellite deployment altitude.

What this means for the consumer is that satellite internet streamed from LEO has a latency of 40 ms, which is an optimal internet connection. Especially when compared to the 700 ms stream latency experienced with satellite internet streamed from GEO. 

What Would it Take to Build a Satellite Internet?

SpaceX, the private company that operates Starlink, currently has 4,500 satellites. However, the company believes it will require 10 times this number to provide comprehensive satellite internet coverage.

Charting the number of active satellites reveals that, despite the increasing number of active satellites, many more must be launched to create a comprehensive satellite internet. 

YearNumber of Active Satellites
20226,905
20214,800
20203,256
20192,272
20182,027
20171,778
20161,462
20151,364
20141,262
20131,187

Next-Generation Internet Innovation

Innovation is at the heart of the internet’s next generation, and the MSCI Next Generation Innovation Index exposes investors to companies that can take advantage of potentially disruptive technologies like satellite internet. 

You can gain exposure to companies advancing access to the internet with four indexes: 

  • MSCI ACWI IMI Next Generation Internet Innovation Index
  • MSCI World IMI Next Generation Internet Innovation 30 Index
  • MSCI China All Shares IMI Next Generation Internet Innovation Index
  • MSCI China A Onshore IMI Next Generation Internet Innovation Index

MSCI thematic indexes are objective, rules-based, and regularly updated to focus on specific emerging trends that could evolve.

Visual Capitalist Logo

Click here to explore the MSCI thematic indexes

You may also like

Voronoi, the app by Visual Capitalist. Where data tells the story. Download on App Store or Google Play

Subscribe

Continue Reading
Appian-Capital

Subscribe

Popular