الجامعة المستتنصرية
كلية العلوم / قسم علوم الحاسوب المرحلة الثالثة / مسائي

Computer Graphics

PART 7

Part Seven

1. Rotation

- Rotation about the origin
- Rotate about a specific point (XP, YP)

2. Reflection

- Reflection on an arbitrary line

Original position	Reflected position
2	

Rotation

Another useful transformation is the rotation of an object about specified pivot point. In rotation, the object is rotated Ǿ about the origin. $_{\text {a }}$ The convention is that :
1- The direction of rotation is counterclockwise if \emptyset Ǿ is a positive angle 2 - The direction of rotation is clockwise if \varnothing Ǿ is a negative angle.

(a) counterclockwise if Ǿ is a positive angle

(b) clockwise if Ǿ is a negative angle

Rotation about the origin

The rotation matrix to rotate an object about the origin in an anticlockwise direction is:

$\operatorname{Cos} \theta$	$\operatorname{Sin} \theta$	0
$-\operatorname{Sin} \theta$	$\operatorname{Cos} \theta$	0
0	0	1

Alternatively, in the equation:

$$
\begin{aligned}
& X_{\text {new }}=X * \operatorname{Cos} \theta-Y * \operatorname{Sin} \theta \\
& Y_{\text {new }}=Y * \operatorname{Cos} \theta+X * \operatorname{Sin} \theta
\end{aligned}
$$

The form of the rotation matrix to rotate an object about the origin in an anticlockwise direction :

$\operatorname{Cos} \theta$	$\operatorname{Sin} \theta$	0
$-\operatorname{Sin} \theta$	$\operatorname{Cos} \theta$	0
0	0	1

$$
\begin{array}{r}
\text { When } \varnothing \text { Ø }=90 \\
\operatorname{Sin}(90)=1 \\
\operatorname{Cos}(90)=0
\end{array}
$$

0	1	0
-1	0	0
0	0	1

When Ǿ = 180
$\operatorname{Sin}(180)=0$
$\operatorname{Cos}(180)=-1$

-1	0	0
0	-1	0
0	0	1

When Ǿ = 270
$\operatorname{Sin}(270)=-1$
$\operatorname{Cos}(270)=0$

0	-1	0
1	0	0
0	0	1

When Ǿ $=360$
$\operatorname{Sin}(\mathbf{3 6 0})=0$
$\operatorname{Cos}(\mathbf{3 6 0})=1$

1	0	0
0	1	0
0	0	1

Example 1:
Rotate the line P1 $(1,6)$ and $P 2(5,1)$ anticlockwise 90 degree.

The solve 1:
$X_{\text {new }}=X * \operatorname{Cos} \theta-Y * \operatorname{Sin} \theta$
$Y_{\text {new }}=Y * \operatorname{Cos} \theta+X * \operatorname{Sin} \theta$

First point

$$
\begin{aligned}
& X_{\text {new }}=1^{*} 0-6^{*} 1=-6 \\
& y_{\text {new }}=6 * 0+1^{*} 1=1
\end{aligned}
$$

Second point
$X_{\text {new }}=5 * 0-1 * 1=-1$
$y_{\text {new }}=1 * 0+5 * 1=5$

Line after rotation
anticlockwise if Ǿ is a positive angle

Example 1:
Rotate the line P1 $(1,6)$ and $\mathbf{P 2}(5,1)$ anticlockwise 90 degree.

The solve 2:

X1 new	Y1 new	1				
X2 new	Y2 new	1	$=$	1	6	1
:---:	:---:	:---:				
5	1	1	$*$	0	1	0
:---:	:---:	:---:				
-1	0	0				
0	0	1				

$=$| -6 | 1 | 1 |
| :---: | :---: | :---: |
| -1 | 5 | 1 |

Line after rotation anticlockwise if Ǿ is a positive angle

Rotation in clockwise direction:

In order to rotate in clockwise direction we use a negative angle, and because:

$$
\begin{aligned}
& \operatorname{Cos}(-\emptyset ́)=\operatorname{Cos} \dot{\emptyset} \\
& \operatorname{Sin}(-\emptyset \dot{\emptyset})=-\operatorname{Sin} \dot{\emptyset}
\end{aligned}
$$

Therefore, The form of the rotation matrix to rotate an object about the origin in clockwise direction :

$\operatorname{Cos} \dot{\emptyset}$	$-\operatorname{Sin} \dot{\boldsymbol{\emptyset}}$	$\mathbf{0}$
$\operatorname{Sin} \dot{\boldsymbol{\emptyset}}$	$\operatorname{Cos} \dot{\boldsymbol{\emptyset}}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

Alternatively, in the equation:

$$
\begin{aligned}
& \text { Xnew }=\mathbf{X} * \operatorname{Cos} \dot{\emptyset}+\mathbf{Y} * \operatorname{Sin} \text { Ǿ } \\
& \text { Ynew }=\mathbf{Y} * \operatorname{Cos} \text { Ǿ }-\mathbf{X} * \operatorname{Sin} \text { Ǿ }
\end{aligned}
$$

Example 2:
Rotate the line P1 $(1,6)$ and $P 2(5,1)$ in clockwise (-90) degree.

The solve:

X1 new	Y1 new	1				
X2 new	Y2 new	1				
1	6	1				
5	1	1	$*$	0	-1	0
:---:	:---:	:---:	:---:	:---:		
1	0	0				
0	0	1				

$=$| 6 | -1 | 1 |
| :--- | :--- | :--- |
| 1 | -5 | 1 |

clockwise if $\not \subset$ is a negative angle

Line after rotation

original position of object and pivot point
We need three steps:
1- Translate the points (and the object) so that the point (XP,YP) lies on the origin

$$
\begin{aligned}
& \mathbf{X P 1}=\mathbf{X}-\mathbf{X P} \\
& \mathbf{Y P 1}=\mathbf{Y}-\mathbf{Y P}
\end{aligned}
$$

translation of object so that pivot point ($\mathrm{X}_{\mathrm{f}}, \mathrm{Y}_{\mathrm{f}}$) is at origin
2- Rotate the translated point (and the translated object) by Ǿ degree about the origin to obtain the new point (XP2,YP2)

$$
\begin{aligned}
& \text { XP2=XP1 * Cos Ǿ - YP1 * Sin Ǿ } \\
& \mathbf{Y P} 2=\mathbf{Y P} 1 * \operatorname{Cos} \mathscr{\emptyset}+\mathbf{X P} 1 * \operatorname{Sin} \text { Ǿ }
\end{aligned}
$$

rotation about origin

3- Back translation

$$
\begin{aligned}
& \mathbf{X P} 3=\mathbf{X P} 2+\mathbf{X P} \\
& \mathbf{Y P}=\mathbf{Y P} 2+\mathbf{Y P}
\end{aligned}
$$

translation of object so that pivot point is returned to position $\left(\mathbf{X}_{f}, Y_{f}\right)$

Example 3:

Rotate the rectangle $(3,2),(6,2),(3,4),(6,4)$ counterclockwise with Ǿ =90 around the point (3,2).

The solve:

1- Translation

$$
\begin{array}{r}
X P=3, Y P=2 \\
X P 1=X-X P \\
Y P 1=Y-Y P
\end{array}
$$

$$
\begin{gathered}
\text { Point }(3,2) \\
X 1_{\text {new }}=3-3=0 \\
Y 1_{\text {new }}=2-2=0
\end{gathered}
$$

2- Rotation

When Ǿ =90

$$
\begin{gathered}
\operatorname{Sin}(90)=1 \\
\operatorname{Cos}(90)=0 \\
\mathbf{X P} 2=\mathbf{X P} 1 * \operatorname{Cos} \text { Ǿ }-\mathbf{Y P} 1 * \operatorname{Sin} \text { Ǿ } \\
\mathbf{Y P} 2=\mathbf{Y P} 1 * \operatorname{Cos} \text { Ǿ }+\mathbf{X P} 1 * \operatorname{Sin} \text { Ǿ }
\end{gathered}
$$

0	1	0
-1	0	0
0	0	1

Point $(0,0)$

$$
\begin{aligned}
& \mathbf{X} 1_{\text {new }}=0 *(0)-0 *(1)=0 \\
& \mathbf{Y} 1_{\text {new }}=0 *(0)+0 *(1)=0
\end{aligned}
$$

Point (0,2)

$$
\begin{aligned}
& \mathrm{X} 3_{\text {new }}=0 *(0)-2 *(1)=-2 \\
& \mathbf{Y} 3_{\text {new }}=2 *(0)+0 *(1)=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{Y} \mathbf{P o i n t ~}(3,0)^{\text {new }}=3 *(0)-0 *(1)=0 \\
& \mathbf{Y} 2_{\text {new }}=0 *(0)+3 *(1)=\mathbf{3}
\end{aligned}
$$

Point (3,2)

$$
\begin{aligned}
& \mathbf{X} 4_{\text {new }}=3 *(0)-2 *(1)=-2 \\
& \mathbf{Y} 4_{\text {new }}=2 *(0)+3 *(1)=3
\end{aligned}
$$

3- Back Translation $\mathbf{X P} 3=\mathbf{X P} 2+\mathbf{X P}$ $\mathbf{Y P} 3=\mathbf{Y P} 2+\mathbf{Y P}$

$$
\begin{array}{r}
\quad \text { Point }(0,0) \\
X 1_{\text {new }}=0+3=3 \\
Y 1_{\text {new }}=0+2=2
\end{array}
$$

$$
\begin{aligned}
& \quad \begin{array}{r}
\text { Point }(-2,0) \\
X 3_{\text {new }}=-2+3=1 \\
Y 3_{\text {new }}=0+2=2
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
\begin{array}{r}
\text { Point }(0,3) \\
X 2_{\text {new }}=0+3=3 \\
Y 2_{\text {new }}
\end{array}=3+2=5 \\
\hline
\end{array}
$$

> Point $(-2,3)$
> $\mathbf{X 4} 4_{\text {new }}=-2+3=1$
> $\mathbf{Y} 4_{\text {new }}=3+2=5$

Reflection

A reflection is a transformation that produces a mirror image of an object relative to an axis of reflection. We can choose an axis of reflection in the $x-y$ plane or perpendicular to the $x-y$ plane. The figure below gives an example of the reflection in the \mathbf{y}-direction and in the \mathbf{x}-direction.

1- Reflection on the X-axis

$$
\begin{aligned}
& \mathbf{X}_{\text {new }}=\mathbf{X} \\
& \mathbf{Y}_{\text {new }}=-\mathbf{Y}
\end{aligned}
$$

1	0	0
0	-1	0
0	0	1

2- Reflection on the Y-axis

$$
\begin{aligned}
& \mathbf{X}_{\mathrm{new}}=-\mathbf{X} \\
& \mathbf{Y}_{\mathrm{new}}=\mathbf{Y}
\end{aligned}
$$

-1	0	0
0	1	0
0	0	1

3- Reflection on the origin

$$
\begin{array}{ll}
\mathbf{X}_{\text {new }}=-\mathbf{X} \\
\mathbf{Y}_{\text {new }}=-\mathbf{Y} & \text { OR }
\end{array}
$$

-1	0	0
0	-1	0
0	0	1

4- Reflection on the line $Y=X$

$$
\begin{aligned}
& \mathbf{X}_{\text {new }}=\mathbf{Y} \\
& \mathbf{Y}_{\text {new }}=\mathbf{X}
\end{aligned}
$$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$

5- Reflection on the line $Y=-X$

$$
\begin{array}{ll}
\mathbf{X}_{\text {new }}=-\mathbf{Y} & \text { OR } \\
\mathbf{Y}_{\text {new }}=-\mathbf{X} &
\end{array}
$$

0	-1	0
-1	0	0
0	0	1

Example 1:

Reflect the point $\mathbf{P}(\mathbf{3 , 2})$ in : A- \mathbf{X} axis; $\mathbf{B}-\mathrm{Y}$ axis; C- origin; D-line $\mathrm{Y}=\mathbf{X}$; The solve: A- X axis

X1 new	Y1 new	1
3	2	1
3	$*$0 -1 0 0 0 1$=$3 -2 1	

Example 2 :
Reflect the triangle with vertices at $\mathrm{A}(2,4), \mathrm{B}(4,6), \mathrm{C}(2,6)$ in : $\mathrm{A}-\mathrm{X}$ axis
1- The solve:

$$
\begin{aligned}
& X_{\text {new }}=\mathbf{X} \\
& \mathbf{Y}_{\text {new }}=-\boldsymbol{Y}
\end{aligned}
$$

$\frac{\text { Point }(2,4)}{X 1_{\text {new }}=2}$	$\frac{\text { Point }(4,6)}{X 1_{\text {new }}=4}$	$\frac{\text { Point }(2,6)}{X 1_{\text {new }}=2}$
$Y 1_{\text {new }}=-4$	$Y 1_{\text {new }}=-6$	$Y 1_{\text {new }}=-6$

6 5 4 3 2 1	
$\begin{array}{lllllll}-6 & -5 & -4 & -3 & -2 & -1\end{array}$	${ }^{1}\left(+\mathbf{x},{ }^{3}-\mathbf{y}^{4}\right)^{5}{ }^{6}$

2- The solve:

X1 new Y1 new 1 X2 new Y2 new 1 X3 new Y3 new 1	$=$2 4 1 4 6 1 2 6 1$*$1 0 0 4 -4 1 4 -6 1 2 -6 -1 0 0 0 1

Example 3 :
Reflect the triangle with vertices at $\mathbf{A}(2,4), \mathrm{B}(4,6), \mathrm{C}(2,6)$ in : Y axis;
1- The solve

$$
\begin{aligned}
& \mathbf{X}_{\text {new }}=-\mathbf{X} \\
& \mathbf{Y}_{\text {new }}=\mathbf{Y}
\end{aligned}
$$

$\frac{\text { Point }(2,4)}{X 1_{\text {new }}=-2}$
$Y 1_{\text {new }}=4$
Point (4,6)
$X 1_{\text {new }}=-4$
$Y 1_{\text {new }}=6$
Point (2,6)
$X 1_{\text {new }}=-2$
$\mathrm{Y} 1_{\text {new }}=6$

2- The solve

X1 new	Y1 new	1
X2 new	Y2 new	1
X3 new	Y3 new	1

$=$| 2 | 4 | 1 |
| :--- | :--- | :--- |
| 4 | 6 | 1 |
| 2 | 6 | 1 |

$*$| -1 | 0 | 0 |
| :---: | :---: | :---: |
| 0 | 1 | 0 |
| 0 | 0 | 1 |

Reflection on an arbitrary line

To reflect an object on a line that does not pass through the origin, which is the general case:

As shown in the figure, let the line L intercept with Y axis in the point $(0, K)$ and have an angle of inclination Ǿ degree with respect to the positive direction of X axis .

To reflect the point P 1 on the line L , we follow the following steps:

1. Move all the points up or down (in the direction of Y axis) so that L pass through the origin

$\mathbf{T}=$| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| $\mathbf{0}$ | -k | $\mathbf{1}$ |

2. Rotate all the points through (-Ǿ) degree about the origin making L lie along the X axis

$\mathbf{R}=$| $\boldsymbol{\operatorname { C o s }} \theta$ | $-\boldsymbol{\operatorname { S i n }} \theta$ | $\mathbf{0}$ |
| :---: | :---: | :---: |
| $\boldsymbol{\operatorname { S i n }} \theta$ | $\boldsymbol{\operatorname { C o s }} \theta$ | $\mathbf{0}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ |

3. Reflect the point $P 1$ on the X axis

$$
\text { R efX }=\begin{array}{|c|c|c|}
\hline 1 & 0 & 0 \\
\hline 0 & -1 & 0 \\
\hline 0 & 0 & 1 \\
\hline
\end{array}
$$

4. Rotate back the points by (-ǿ) degree so that L back to its original orientation

$$
\mathbf{R}_{-\mathbf{1}}=\begin{array}{|c|c|c|}
\hline \boldsymbol{\operatorname { C o s }} \theta & \boldsymbol{\operatorname { S i n }} \theta & \mathbf{0} \\
\hline-\boldsymbol{\operatorname { S i n }} \theta & \boldsymbol{\operatorname { C o s }} \theta & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\hline
\end{array}
$$

5. Shift in the direction of Y axis so that L is back in its original position

$T_{-1}=$| $\mathbf{1}$ | 0 | 0 |
| :---: | :---: | :---: |
| $\mathbf{0}$ | 1 | 0 |
| 0 | k | 1 |

The sequence of matrices needed to perform this non-standard reflection is:

$$
\mathbf{S}=\mathbf{T} * \mathbf{R} * \operatorname{RefX} * \mathbf{R}_{-1} * \mathbf{T}_{-1}
$$

$\mathbf{S}=$	Cos 2ǿ	Sin 2ǿ	0
	Sin 2Ǿ	- $\operatorname{Cos} 2$ Ǿ	0
	-K Sin 20́㇒	K+K Cos 2Ǿ	1

Example 4 :

Find the single matrix that causes all the points in the plane to be reflected in the line with equation $\mathrm{Y}=\mathbf{0 . 5 \mathrm { X } + 2 \text { , then apply this matrix to reflect the }}$ triangle with vertices at $A(2,4), B(4,6), C(2,6)$ in the line.

The solve

$>$ The Cartesian equation of a line in 2D is $Y=M * X+b$ where b is the intersection of the lint with the Y axis and M is gradient of the line $M=\Delta Y / \Delta X=$ Tan $\mathscr{\emptyset}$
$>$ So the line $Y=0.5 X+2$ has gradient $M=0.5$
 and intersect with the Y axis at the point where $y=2$
\rightarrow So $K=2, \quad$ Tan Ǿ $=0.5==>$ Ǿ $=26.57$ 2 Ǿ=53.13, $\operatorname{Cos} 2 \emptyset ́=0.6, \operatorname{Sin} 2 \emptyset ́=0.8$

$S=$| 0.6 | 0.8 | 0 |
| :---: | :---: | :---: |
| 0.8 | -0.6 | 0 |
| -1.6 | 3.2 | 1 |

To reflected the triangle on the line:

2	4	1				
4	6	1				
2	6	1	$*$	0.6	0.8	0
:---:	:---:	:---:				
0.8	-0.6	0				
-1.6	3.2	1	$=$	2.8	2.4	1
:---:	:---:	:---:				
5.6	2.8	1				
4.4	1.2	1				

The End

