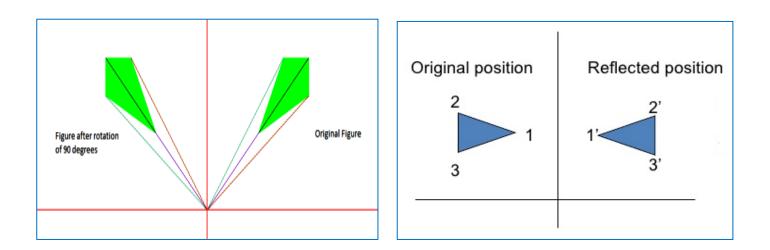
الجامعة المستنصرية كلية العلوم / قسم علوم الحاسوب المرحلة الثالثة / مسائي

Computer Graphics

Part Seven

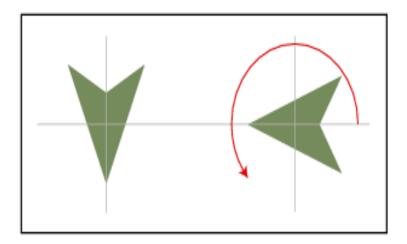
- 1. Rotation
 - Rotation about the origin
 - Rotate about a specific point (XP, YP)
- 2. Reflection
 - Reflection on an arbitrary line



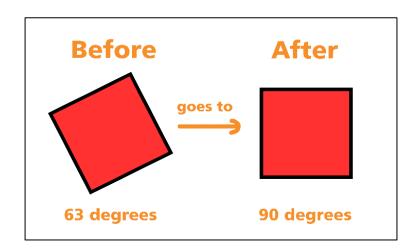
Rotation

Another useful transformation is the rotation of an object about specified pivot point. In rotation, the object is rotated \acute{O} about the origin. The convention is that :

- **1-** The direction of rotation is **counterclockwise** if \acute{O} is a positive angle
- **2-** The direction of rotation is clockwise if \oint is a negative angle.



(a) counterclockwise if Ø is a positive angle



(b) clockwise if \acute{O} is a negative angle

The rotation matrix to rotate an object about the origin in an anticlockwise direction is:

Cos <i>θ</i>	Sin <i>θ</i>	0
-Sin $ heta$	Cos <i>θ</i>	0
0	0	1

Alternatively, in the equation:

$$X_{new} = X * \cos \theta - Y * \sin \theta$$
$$Y_{new} = Y * \cos \theta + X * \sin \theta$$

The form of the rotation matrix to rotate an object about the origin in an anticlockwise direction :

Cos θ	Sin <i>θ</i>	0
-Sin <i>0</i>	Cos <i>θ</i>	0
0	0	1

When Ø =90	0 -1	1	0
Sin (90) = 1 Cos (90) = 0	0	0	1
When Ø =180	-1	0	0
Sin(180) = 0	0	-1	0
$\cos(180) = -1$	0	0	1
When Ó =270	0	-1	0
Sin(270) = -1	1	0	0
$\cos(270) = 0$	0	0	1
When Ø =360	1	0	0
Sin(360) = 0	0	1	0
$\cos(360) = 1$	0	0	1

Example 1:

Rotate the line P1 (1, 6) and P2 (5, 1) anticlockwise 90 degree.

The solve 1:

$$X_{new} = X * \cos \theta - Y * \sin \theta$$
$$Y_{new} = Y * \cos \theta + X * \sin \theta$$

First point

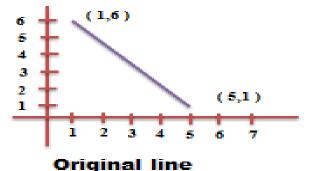
$$\frac{X_{new}}{y_{new}} = 1*0 - 6*1 = -6$$

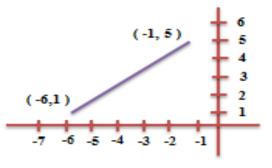
$$\frac{y_{new}}{y_{new}} = 6*0 + 1*1 = 1$$

Second point

 $\begin{aligned} X_{new} &= 5^*0 - 1^* \ 1 = -1 \\ y_{new} &= 1^*0 + 5^*1 = 5 \end{aligned}$

anticlockwise if Ø is a positive angle



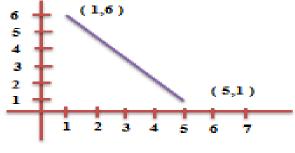


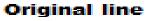
Line after rotation

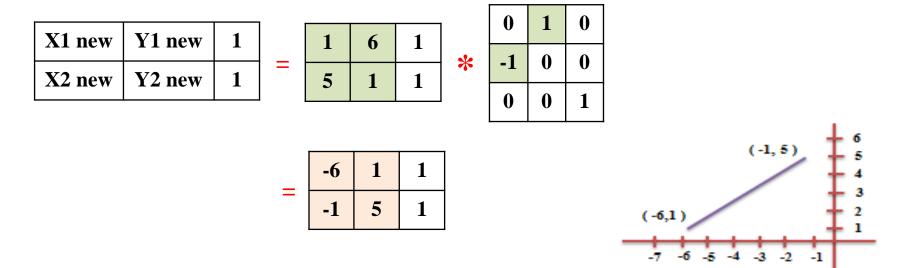
Example 1:

Rotate the line P1 (1, 6) and P2 (5, 1) anticlockwise 90 degree.

The solve 2:







Line after rotation

anticlockwise if Ø is a positive angle

In order to rotate in clockwise direction we use a negative angle, and because: $\cos(-\acute{O}) = \cos\acute{O}$ $\sin(-\acute{O}) = -\sin\acute{O}$

Therefore, The form of the rotation matrix to rotate an object about the origin in clockwise direction :

Cos Ó	-Sin Ó	0
Sin Ó	Cos Ó	0
0	0	1

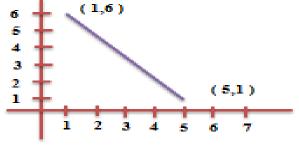
Alternatively, in the equation:

Xnew =X * Cos \acute{O} + Y * Sin \acute{O} Ynew = Y * Cos \acute{O} - X * Sin \acute{O}

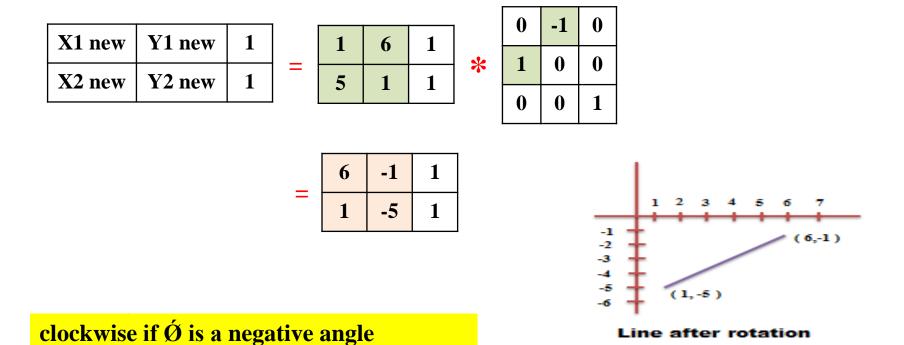
Example 2:

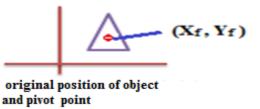
Rotate the line P1 (1, 6) and P2 (5, 1) in clockwise (-90) degree.

The solve:



Original line





We need three steps:

1- Translate the points (and the object) so that the point (XP,YP) lies on the origin

$$XP1 = X - XP$$
$$YP1 = Y - YP$$

translation of object so that pivot point (Xf, Yf) is at origin

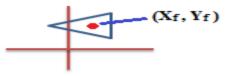
2- Rotate the translated point (and the translated object) by \acute{O} degree about the origin to obtain the new point (XP2,YP2)

XP2=XP1 * Cos Ó - YP1 * Sin Ó YP2=YP1 * Cos Ó + XP1 * Sin Ó

rotation about origin

3- Back translation

XP3=XP2 + XPYP3=YP2 + YP



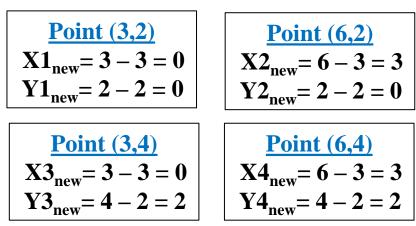
translation of object so that pivot point is returned to position (Xf, Yf)

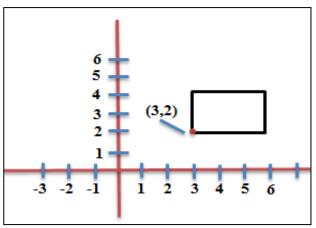
Example 3:

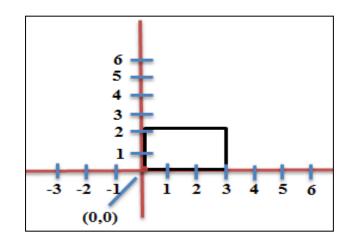
Rotate the rectangle (3, 2), (6, 2), (3, 4), (6, 4) counterclockwise with $\cancel{\emptyset} = 90$ around the point (3,2).

The solve:

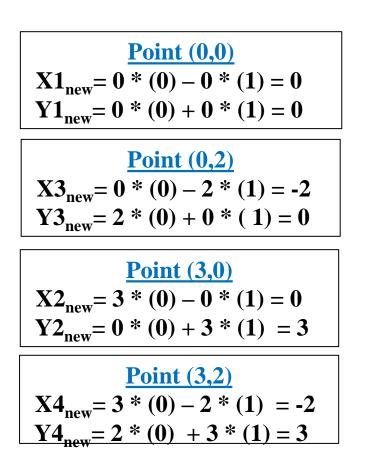
 $\frac{1 - \text{Translation}}{\text{XP}= 3}, \text{YP}= 2$ $\frac{\text{XP}= X - \text{XP}}{\text{YP}= Y - \text{YP}}$

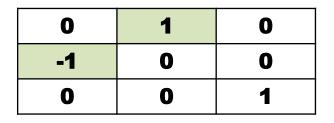


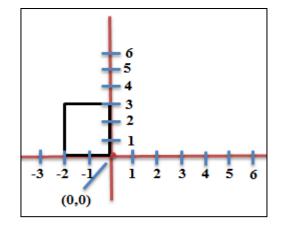




2- <u>Rotation</u> When $\acute{Ø}$ =90 Sin (90) = 1 Cos (90) = 0 XP2=XP1 * Cos $\acute{Ø}$ - YP1 * Sin $\acute{Ø}$ YP2=YP1 * Cos $\acute{Ø}$ + XP1 * Sin $\acute{Ø}$







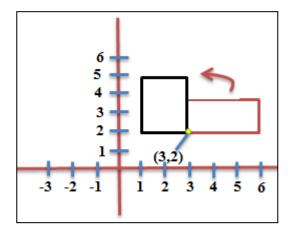
<u>3- Back Translation</u> XP3= XP2 + XP YP3= YP2 + YP

$$\frac{Point (0,0)}{X1_{new}} = 0 + 3 = 3$$
$$Y1_{new} = 0 + 2 = 2$$

$$\frac{Point (-2,0)}{X3_{new}} = -2 + 3 = 1$$
$$Y3_{new} = 0 + 2 = 2$$

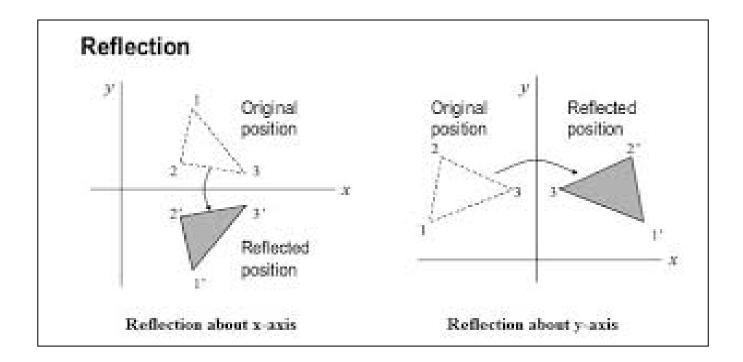
 $\frac{\text{Point (0,3)}}{\text{X2}_{\text{new}} = 0 + 3 = 3}$ $\text{Y2}_{\text{new}} = 3 + 2 = 5$

$$\frac{Point (-2,3)}{X4_{new}} = -2 + 3 = 1$$
$$Y4_{new} = 3 + 2 = 5$$



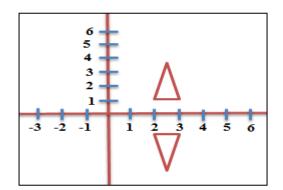
Reflection

A reflection is a transformation that produces a mirror image of an object relative to an axis of reflection. We can choose an axis of reflection in the x-y plane or perpendicular to the x-y plane. The figure below gives an example of the reflection in the y-direction and in the x-direction.



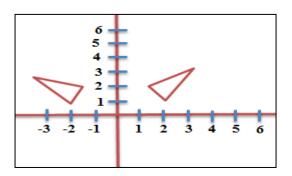
1- Reflection on the X-axis

1	0	0
0	-1	0
0	0	1

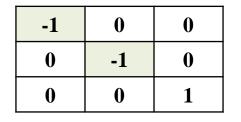


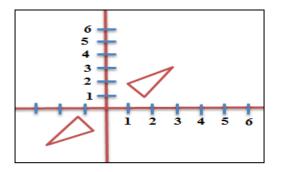
2- Reflection on the Y-axis

-1	0	0
0	1	0
0	0	1



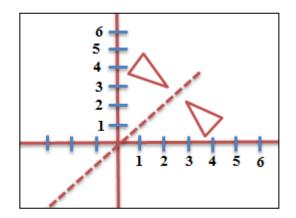
3- Reflection on the origin





4- Reflection on the line **Y** = **X**

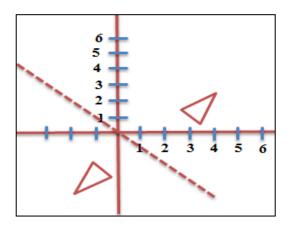
0	1	0
1	0	0
0	0	1



5- Reflection on the line **Y**= **-X**

$$X_{new} = -Y OR$$
$$Y_{new} = -X$$

0	-1	0
-1	0	0
0	0	1



Example 1:

Reflect the point P(3, 2) in : A- X axis; B- Y axis; C- origin; D-line Y=X;

The solve:

X1 new

Y1 new

*

=

<u>A-</u>X axis X1 new Y1 new -1 * -2 = = **<u>B-</u>**Y axis -1 Y1 new X1 new * -3 = = <u>*C*-</u>Origin -1 -1 Y1 new X1 new -3 -2 * = = **<u>D-</u>**Line Y=X

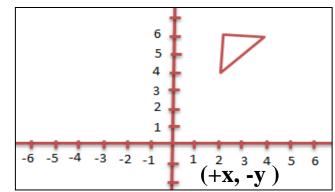
Example 2 :

Reflect the triangle with vertices at A(2, 4), B(4, 6), C(2, 6) in : A- X axis

1- The solve:

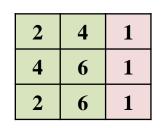
 $\mathbf{X}_{new} = \mathbf{X}$ $\mathbf{Y}_{new} = -\mathbf{Y}$

<u>Point (2,4)</u>	Point (4,6)	Point (2,6)
$X1_{new} = 2$	$X1_{new} = 4$	$X1_{new} = 2$
$Y1_{new} = -4$	$Y1_{new} = -6$	$Y1_{new} = -6$



2- The solve:

X1 new	Y1 new	1	
X2 new	Y2 new	1	=
X3 new	Y3 new	1	



-4

-6

-6

1

1

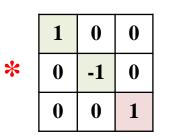
1

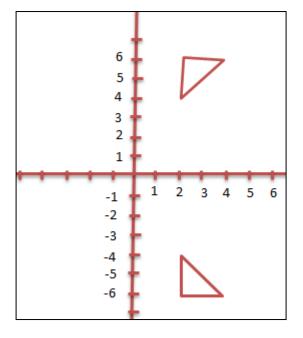
2

4

2

=



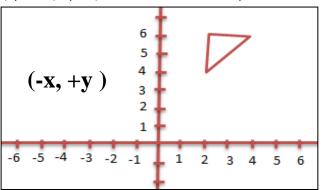


Example 3:

Reflect the triangle with vertices at A(2, 4), B(4, 6), C(2, 6) in : Y axis;

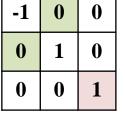
 $\mathbf{X}_{\mathbf{new}} = -\mathbf{X}$ $\mathbf{Y}_{new} = \mathbf{Y}$

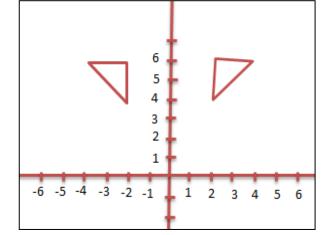
<u>Point (2,4)</u>	Point (4,6)	<u>Point (2,6)</u>
$X1_{new} = -2$	X1 _{new} =-4	$X1_{new} = -2$
$Y1_{new} = 4$	$Y1_{new} = 6$	$Y1_{new} = 6$



2- The solve

X1 new	Y1 new	1
X2 new	Y2 new	1
X3 new	Y3 new	1

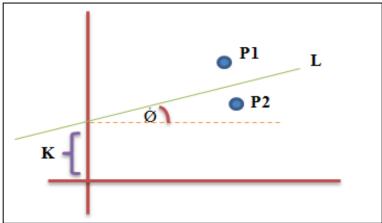




	-2	4	1
=	-4	6	1
	-2	6	1

Reflection on an arbitrary line

To reflect an object on a line that does not pass through the origin, which is the general case:



As shown in the figure, let the line L intercept with Y axis in the point (0,K) and have an angle of inclination \acute{O} degree with respect to the positive direction of X axis.

To reflect the point P1 on the line L, we follow the following steps:

1. Move all the points up or down (in the direction of Y axis) so that L pass through the origin

	1	0	0
T =	0	1	0
	0	- k	1

2. Rotate all the points through $(-\acute{O})$ degree about the origin making L lie along the X axis

	$\cos \theta$	-Sin θ	0
R =	Sin θ	Cos θ	0
	0	0	1

3. Reflect the point P1 on the X axis

	1	0	0
R efX=	0	-1	0
	0	0	1

4. Rotate back the points by $(-\acute{O})$ degree so that L back to its original orientation

$$\mathbf{R}_{-1} = \begin{array}{c|c} \mathbf{Cos} \ \theta & \mathbf{Sin} \ \theta & \mathbf{0} \\ \hline \mathbf{-Sin} \ \theta & \mathbf{Cos} \ \theta & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{1} \end{array}$$

5. Shift in the direction of Y axis so that L is back in its original position

$$T_{-1} = \begin{array}{c|cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & k & 1 \end{array}$$

The sequence of matrices needed to perform this non-standard reflection is:

S=T * R * RefX * R ₋₁ * T ₋₁

	Cos 2Ó	Sin 2Ó	0
S =	Sin 2Ó	-Cos 2Ó	0
	-K Sin 2Ø	K+K Cos 2Ó	1

<u>Example 4 :</u>

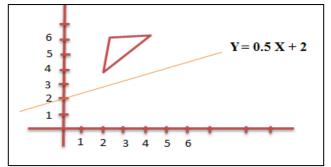
Find the single matrix that causes all the points in the plane to be reflected in the line with equation Y=0.5X+2, then apply this matrix to reflect the triangle with vertices at A(2, 4), B(4, 6), C(2, 6) in the line.

The solve

> The Cartesian equation of a line in 2D is Y = M * X + bwhere b is the intersection of the lint with the Y axis and M is gradient of the line $M = \Delta Y / \Delta X = Tan \ \acute{O}$

➤ So the line Y=0.5 X + 2 has gradient M= 0.5 and intersect with the Y axis at the point where y=2

> So K=2, Tan $\acute{O} = 0.5 ==> \acute{O} = 26.57$ 2 $\acute{O} = 53.13$, Cos 2 $\acute{O} = 0.6$, Sin 2 $\acute{O} = 0.8$



0.6	0.8	0
0.8	- 0.6	0
- 1.6	3.2	1

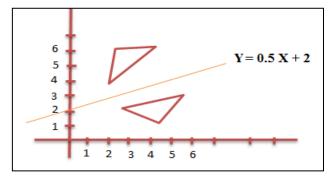
To reflected the triangle on the line:

2	4	1	
4	6	1	*
2	6	1	

0.6	0.8	0
0.8	- 0.6	0
- 1.6	3.2	1

2.8	2.4	1
5.6	2.8	1
4.4	1.2	1

S =



The End