Skip to main content

Coffea arabica

  • Chapter
  • First Online:
Edible Medicinal And Non-Medicinal Plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Akashi I, Kagami K, Hirano T, Oka K (2009) Protective effects of coffee-derived compounds on lipopoly­saccharide/D-galactosamine induced acute liver injury in rats. J Pharm Pharmacol 61(4):473–478

    Article  PubMed  CAS  Google Scholar 

  • Akiyama M, Murakami K, Hirano Y, Ikeda M, Iwatsuki K, Wada A, Tokuno K, Onishi M, Iwabuchi H (2008) Characterization of headspace aroma compounds of freshly brewed arabica coffees and studies on a characteristic aroma compound of Ethiopian coffee. J Food Sci 73(5):C335–C346

    Article  PubMed  CAS  Google Scholar 

  • Al Kanhal MA (1997) Lipid analysis of Coffea arabica Linn. beans and their possible hypercholesterolemic effects. Int J Food Sci Nutr 48(2):135–139

    Article  PubMed  CAS  Google Scholar 

  • Allred KF, Yackley KM, Vanamala J, Allred CD (2009) Trigonelline is a novel phytoestrogen in coffee beans. J Nutr 139(10):1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Salces RM, Guillou C, Berrueta LA (2009a) Liquid chromatography coupled with ultraviolet absorbance detection, electrospray ionization, collision-induced dissociation and tandem mass spectrometry on a triple quadrupole for the on-line characterization of polyphenols and methylxanthines in green coffee beans. Rapid Commun Mass Spectrom 23(3):363–383

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Salces RM, Serra F, Reniero F, Héberger K (2009b) Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): chemometric evaluation of phenolic and methylxanthine contents. J Agric Food Chem 57(10):4224–4235

    Article  PubMed  CAS  Google Scholar 

  • Altman RD, Lang AE, Postuma RB (2011) Caffeine in Parkinson’s disease: a pilot open-label, dose-escalation study. Mov Disord 26(13):2427–2431

    Article  PubMed  Google Scholar 

  • Alves RC, Casal S, Oliveira BPP (2007) Factors influencing the norharman and harman contents in espresso coffee. J Agric Food Chem 55(5):1832–1838

    Article  PubMed  CAS  Google Scholar 

  • Alves RC, Almeida IMC, Casal S, Oliveira BPP (2010) Isoflavones in coffee: influence of species, roast degree, and brewing method. J Agric Food Chem 58(5):3002–3007

    Article  PubMed  CAS  Google Scholar 

  • Andrade PB, Leitão R, Seabra RM, Oliveira MB, Ferreira MA (1998) 3,4-Dimethoxycinnamic acid levels as a tool for differentiation of Coffea canephora var. robusta and Coffea Arabica. Food Chem 61(4):511–514

    Article  CAS  Google Scholar 

  • Anese M, Nicoli MC (2003) Antioxidant properties of ready-to-drink coffee brews. J Agric Food Chem 51(4):942–946

    Article  PubMed  CAS  Google Scholar 

  • Anila Namboodiripad P, Kori S (2009) Can coffee prevent caries? J Conserv Dent 12(1):17–21

    Article  PubMed  Google Scholar 

  • Anthony F, Bertrand B, Quiros O, Wilches A, Lashermes P, Berthaud J, Charrier A (2001) Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers. Euphytica 118(1):53–65

    Article  CAS  Google Scholar 

  • Antonio AG, Moraes RS, Perrone D, Maia LC, Santos KRN, Iório NLP, Farah A (2010) Species, roasting degree and decaffeination influence the antibacterial activity of coffee against Streptococcus mutans. Food Chem 118(3):782–788

    Article  CAS  Google Scholar 

  • Arab L, Su LJ, Steck SE, Ang A, Fontham ET, Bensen JT, Mohler JL (2012) Coffee consumption and prostate cancer aggressiveness among African and Caucasian Americans in a population-based study. Nutr Cancer 64(5):637–642

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Cao C (2010) Caffeine and coffee as therapeutics against Alzheimer’s disease. J Alzheimers Dis 20(Suppl 1):S117–S126

    PubMed  CAS  Google Scholar 

  • Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142(4):941–952

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Mori T, Cao C, Mamcarz M, Runfeldt M, Dickson A, Rezai-Zadeh K, Tane J, Citron BA, Lin X, Echeverria V, Potter H (2009) Caffeine reverses ­cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis 17(3):661–680

    PubMed  CAS  Google Scholar 

  • Arisseto AP, Vicente E, Ueno MS, Tfouni SA, Toledo MC (2011) Furan levels in coffee as influenced by species, roast degree, and brewing procedures. J Agric Food Chem 59(7):3118–3124

    Article  PubMed  CAS  Google Scholar 

  • Arnold U, Ludwig E, Kühn R, Möschwitzer U (1994) Analysis of free amino acids in green coffee beans. I. Determination of amino acids after precolumn derivatization using 9-fluorenylmethylchloroformate. Z Lebensm Unters Forsch 199(1):22–25

    Article  PubMed  CAS  Google Scholar 

  • Arya M, Rao LJ (2007) An impression of coffee carbohydrates. Crit Rev Food Sci Nutr 47(1):51–67

    Article  PubMed  CAS  Google Scholar 

  • Ascherio A, Zhang SM, Hernán MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50(1):56–63

    Article  PubMed  CAS  Google Scholar 

  • Ashihara H, Monteiro AM, Gillies FM, Crozier A (1996) Biosynthesis of caffeine in leaves of coffee. Plant Physiol 111(3):747–753

    PubMed  CAS  Google Scholar 

  • Backer CA, van den Brink RCB (1965) Flora of java (spermatophytes only), vol 2. Wolters-Noordhoff, Groningen, 641 pp

    Google Scholar 

  • Bagdonaite K, Derler K, Murkovic M (2008) Determination of acrylamide during roasting of coffee. J Agric Food Chem 56(15):6081–6086

    Article  PubMed  CAS  Google Scholar 

  • Baker JA, Beehler GP, Sawant AC, Jayaprakash V, McCann SE, Moysich KB (2006) Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer. J Nutr 136(1):166–171

    PubMed  CAS  Google Scholar 

  • Barcelos AF, Paiva PCA, Pérez JRO, Santos VB, Cardoso RM (2001) Fatores antinutricionais da casca e da polpa desidratada de café (Coffea arabica L.) armazenadas em diferentes períodos. Ver Bras Zootecn 30:1325–1331 (Antinutritional factors of the hull and dehydrated pulp of coffee (Coffea arabica L.) stored in different periods)

    Google Scholar 

  • Battram DS, Arthur R, Weekes A, Graham TE (2006) The glucose intolerance induced by caffeinated coffee ingestion is less pronounced than that due to alkaloid caffeine in men. J Nutr 136(5):1276–1280

    PubMed  CAS  Google Scholar 

  • Beaudoin MS, Robinson LE, Graham TE (2011) An oral lipid challenge and acute intake of caffeinated coffee additively decrease glucose tolerance in healthy men. J Nutr 141(4):574–581

    Article  PubMed  CAS  Google Scholar 

  • Berthaud J, Charrier A (1988) Genetics resources of CoffeaIn: Clarke RJ, Macrae R (eds) Coffee vol 4: Agronomy. Elsevier Applied Science, London, pp 1–42

    Google Scholar 

  • Bicho NC, Leitão AE, Ramalho JC, De Alvarenga NB, Lidon FC (2011) Identification of nutritional descriptors of roasting intensity in beverages of Arabica and Robusta coffee beans. Int J Food Sci Nutr 62(8):865–871

    Article  PubMed  CAS  Google Scholar 

  • Bidel S, Hu G, Sundvall J, Kaprio J, Tuomilehto J (2006) Effects of coffee consumption on glucose tolerance, serum glucose and insulin levels - a cross-sectional analysis. Horm Metab Res 38(1):38–43

    Article  PubMed  CAS  Google Scholar 

  • Bidel S, Hu G, Jousilahti P, Antikainen R, Pukkala E, Hakulinen T, Tuomilehto J (2010) Coffee ­consumption and risk of colorectal cancer. Eur J Clin Nutr 64(9):917–923

    Article  PubMed  CAS  Google Scholar 

  • Birerdinc A, Stepanova M, Pawloski L, Younossi ZM (2012) Caffeine is protective in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 35(1):76–82

    Article  PubMed  CAS  Google Scholar 

  • Blank I, Sen A, Grosch W (1992) Potent odorants of the roasted powder and brew of Arabica coffee. Z Lebensm Unters For A 195(3):239–245

    Article  CAS  Google Scholar 

  • Borrelli RC, Visconti A, Mennella C, Anese M, Fogliano V (2002) Chemical characterization and antioxidant properties of coffee melanoidins. J Agric Food Chem 50(22):6527–6533

    Article  PubMed  CAS  Google Scholar 

  • Borrelli RC, Esposito F, Napolitano A, Ritieni A, Fogliano V (2004) Characterization of a new potential functional ingredient: coffee silverskin. J Agric Food Chem 52(5):1338–1343

    Article  PubMed  CAS  Google Scholar 

  • Braem MG, Onland-Moret NC, Schouten LJ, Tjønneland A, Hansen L, Dahm CC, Overvad K, Lukanova A, Dossus L, Floegel A, Boeing H, Clavel-Chapelon F, Chabbert-Buffet N, Fagherazzi G, Trichopoulou A, Benetou V, Goufa I, Pala V, Galasso R, Mattiello A, Sacerdote C, Palli D, Tumino R, Gram IT, Lund E, Gavrilyuk O, Sánchez MJ, Quirós R, Gonzales CA, Dorronsoro M, Castaño JM, Gurrea AB, Idahl A, Ohlson N, Lundin E, Jirstrom K, Wirfalt E, Allen NE, Tsilidis KK, Kaw KT, Bueno-de-Mesquita HB, Dik VK, Rinaldi S, Fedirko V, Norat T, Riboli E, Kaaks R, Peeters PH (2012) Coffee and tea consumption and the risk of ovarian cancer: a prospective cohort study and updated meta-analysis. Am J Clin Nutr 95(5):1172–1181

    Article  PubMed  CAS  Google Scholar 

  • Brent RL, Christian MS, Diener RM (2011) Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Res B Dev Reprod Toxicol 92(2):152–187

    Article  PubMed  CAS  Google Scholar 

  • Bressani R, Cabezas MT, Jarquin R, Murillo B (1975) The use of coffee processing waste as animal feed. In: Proceedings of the conference on animal feeds of tropical and subtropical origin. Tropical Products Institute, London, UK, pp 107–117

    Google Scholar 

  • Brezová V, Šlebodová A, Staško A (2009) Coffee as a source of antioxidants: an EPR study. Food Chem 114(3):859–868

    Article  CAS  Google Scholar 

  • Brothers HM, Marchalant Y, Wenk GL (2010) Caffeine attenuates lipopolysaccharide-induced neuroinflamma­tion. Neurosci Lett 480(2):97–100

    Article  PubMed  CAS  Google Scholar 

  • Browne ML (2006) Maternal exposure to caffeine and risk of congenital anomalies: a systematic review. Epidemiology 17(3):324–331

    Article  PubMed  Google Scholar 

  • Browne ML, Bell EM, Druschel CM, Gensburg LJ, Mitchell AA, Lin AE, Romitti PA, Correa A, National Birth Defects Prevention Study (2007) Maternal caffeine consumption and risk of cardiovascular malformations. Birth Defects Res A Clin Mol Teratol 79(7):533–543

    Article  PubMed  CAS  Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Revised reprint, 2 vols, vol 1 (A–H), pp 1–1240, vol 2 (I–Z), pp 1241–2444. Ministry of Agriculture and Co-operatives, Kuala Lumpur

    Google Scholar 

  • Burkill HM (1998) Useful plants of west tropical Africa, vol 4, Families M-R. Royal Botanic Gardens, Kew, 969 pp

    Google Scholar 

  • Cao C, Cirrito JR, Lin X, Wang L, Verges DK, Dickson A, Mamcarz M, Zhang C, Mori T, Arendash GW, Holtzman DM, Potter H (2009) Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J Alzheimers Dis 17(3):681–697

    PubMed  CAS  Google Scholar 

  • Cao C, Wang L, Lin X, Mamcarz M, Zhang C, Bai G, Nong J, Sussman S, Arendash G (2011) Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer’s mice. J Alzheimers Dis 25(2):323–335

    PubMed  CAS  Google Scholar 

  • Cao C, Loewenstein DA, Lin X, Zhang C, Wang L, Duara R, Wu Y, Giannini A, Bai G, Cai J, Greig M, Schofield E, Ashok R, Small B, Potter H, Arendash GW (2012) High blood caffeine levels in MCI linked to lack of progression to dementia. J Alzheimers Dis 30(3):559–572

    PubMed  CAS  Google Scholar 

  • Carmago TD (1924) The presence of vernine (guanosine) in the green leaves and berried of the coffee tree (Coffea arabica L.) and its relation to the origin of caffeine in this plant. J Biol Chem 58(3):831–834

    Google Scholar 

  • Carvalho DC, Brigagão MR, dos Santos MH, de Paula FB, Giusti-Paiva A, Azevedo L (2011) Organic and conventional Coffea arabica L.: a comparative study of the chemical composition and physiological, biochemical and toxicological effects in Wistar rats. Plant Foods Hum Nutr 66(2):114–121

    Article  CAS  Google Scholar 

  • Casal S, Mendes E, Alves MR, Alves RC, Beatriz M, Oliveira PP, Ferreira MA (2004) Free and conjugated biogenic amines in green and roasted coffee beans. J Agric Food Chem 52(20):6188–6192

    Article  PubMed  CAS  Google Scholar 

  • Castellanos FX, Rapoport JL (2002) Effects of caffeine on development and behavior in infancy and childhood: a review of the published literature. Food Chem Toxicol 40(9):1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Catalano D, Martines GF, Tonzuso A, Pirri C, Trovato FM, Trovato GM (2010) Protective role of coffee in non-alcoholic fatty liver disease (NAFLD). Dig Dis Sci 55(11):3200–3206

    Article  PubMed  CAS  Google Scholar 

  • Cavin C, Holzhäuser D, Constable A, Huggett AC, Schilter B (1998) The coffee-specific diterpenes cafestol and kahweol protect against aflatoxin B1-induced genotoxicity through a dual mechanism. Carcinogenesis 19(8):1369–1375

    Article  PubMed  CAS  Google Scholar 

  • Cavin C, Mace K, Offord EA, Schilter B (2001) Protective effects of coffee diterpenes against aflatoxin B1-induced genotoxicity: mechanisms in rat and human cells. Food Chem Toxicol 39(6):549–556

    Article  PubMed  CAS  Google Scholar 

  • Cavin C, Holzhaeuser D, Scharf G, Constable A, Huber WW, Schilter B (2002) Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem Toxicol 40(8):1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Cavin C, Marin-Kuan M, Langouët S, Bezençon C, Guignard G, Verguet C, Piguet D, Holzhäuser D, Cornaz R, Schilter B (2008) Induction of ­Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver. Food Chem Toxicol 46(4):1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Charles-Bernard M, Kraehenbuehl K, Rytz A, Roberts DD (2005) Interactions between volatile and nonvolatile coffee components. 1. Screening of nonvolatile components. J Agric Food Chem 53(11):4417–4425

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K, Castagnoli N Jr, Schwarzschild MA (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21(10):143

    Google Scholar 

  • Chen X, Gawryluk JW, Wagener JF, Ghribi O, Geiger JD (2008) Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer’s disease. J Neuroinflammation 5:12

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Ghribi O, Geiger JD (2010) Caffeine protects against disruptions of the blood-brain barrier in animal models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis 20(Suppl 1):S127–S141

    PubMed  CAS  Google Scholar 

  • Cheng B, Liu X, Gong H, Huang L, Chen H, Zhang X, Li C, Yang M, Ma B, Jiao L, Zheng L, Huang K (2011) Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J Agric Food Chem 59(24):13147–13155

    Article  PubMed  CAS  Google Scholar 

  • Chiang HM, Lin TJ, Chiu CY, Chang CW, Hsu KC, Fan PC, Wen KC (2011) Coffea arabica extract and its constituents prevent photoaging by suppressing MMPs expression and MAP kinase pathway. Food Chem Toxicol 49(1):309–318

    Article  PubMed  CAS  Google Scholar 

  • Cho ES, Jang YJ, Hwang MK, Kang NJ, Lee KW, Lee HJ (2009) Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutat Res 661(1–2):18–24

    PubMed  CAS  Google Scholar 

  • Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48(3):937–943

    Article  PubMed  CAS  Google Scholar 

  • Chou TM, Benowitz NL (1994) Caffeine and coffee: effects on health and cardiovascular disease. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 109(2):173–189

    Article  PubMed  CAS  Google Scholar 

  • Christian MS, Brent RL (2001) Teratogen update: evaluation of the reproductive and developmental risks of caffeine. Teratology 64(1):51–78

    Article  PubMed  CAS  Google Scholar 

  • Chu YF, Brown PH, Lyle BJ, Chen Y, Black RM, Williams CE, Lin YC, Hsu CW, Cheng IH (2009) Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees. J Agric Food Chem 57(20):9801–9808

    Article  PubMed  CAS  Google Scholar 

  • Clifford MN (1999) Chlorogenic acids and other cinnamates. Nature, occurrence and dietary burden. J Sci Food Agric 79:362–372

    Article  CAS  Google Scholar 

  • Clifford MN (2000) Chlorogenic acids and other cinnamates – nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80:1033–1043

    Article  CAS  Google Scholar 

  • Clifford MN (2003) Hierarchical scheme for LC-MS n identification of chlorogenic acids. J Agric Food Chem 51:2900–2911

    Article  PubMed  CAS  Google Scholar 

  • Clifford MN, Ramirez-Martinez JR (1991a) Phenols and caffeine in wet-processed coffee beans and coffee pulp. Food Chem 40(1):35–42

    Article  CAS  Google Scholar 

  • Clifford MN, Ramirez-Martinez JR (1991b) Tannins in wet-processed coffee beans and coffee pulp. Food Chem 40(2):191–200

    Article  CAS  Google Scholar 

  • Conde SV, Nunes da Silva T, Gonzalez C, Mota Carmo M, Monteiro EC, Guarino MP (2012) Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats. Br J Nutr 107(1):86–95

    Article  PubMed  CAS  Google Scholar 

  • Cornelis MC, El-Sohemy A (2007) Coffee, caffeine, and coronary heart disease. Curr Opin Lipidol 18(1):13–19

    Article  PubMed  CAS  Google Scholar 

  • Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H (2006) Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 295(10):1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Costa J, Lunet N, Santos C, Santos J, Vaz-Carneiro A (2010) Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis 20(Suppl 1):S221–S238

    PubMed  CAS  Google Scholar 

  • Cunha RA, Agostinho PM (2010) Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis 20(Suppl 1):S95–S116

    PubMed  CAS  Google Scholar 

  • Czerny M, Grosch W (2000) Potent odorants of raw Arabica coffee. Their changes during roasting. J Agric Food Chem 48(3):868–872

    Article  PubMed  CAS  Google Scholar 

  • D’Agostina A, Boschin G, Bacchini F, Arnoldi A (2004) Investigations on the high molecular weight foaming fractions of espresso coffee. J Agr Food Chem 52(23):7118–7125

    Article  CAS  Google Scholar 

  • Daglia M, Papetti A, Gregotti C, Bertè F, Gazzani G (2000) In vitro antioxidant and ex vivo protective activities of green and roasted coffee. J Agric Food Chem 48(5):1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Daglia M, Tarsi R, Papetti A, Grisoli P, Dacarro C, Pruzzo C, Gazzani G (2002) Antiadhesive effect of green and roasted coffee on Streptococcus mutans′ adhesive properties on saliva-coated hydroxyapatite beads. J Agric Food Chem 50(5):1225–1229

    Article  PubMed  CAS  Google Scholar 

  • Daglia M, Racchi M, Papetti A, Lanni C, Govoni S, Gazzani G (2004) In vitro and ex vivo antihydroxyl radical activity of green and roasted coffee. J Agric Food Chem 52(6):1700–1704

    Article  PubMed  CAS  Google Scholar 

  • Daglia M, Papetti A, Aceti C, Sordelli B, Spini V, Gazzani G (2007a) Isolation and determination of alpha-dicarbonyl compounds by RP-HPLC-DAD in green and roasted coffee. J Agric Food Chem 55(22):8877–8882

    Article  PubMed  CAS  Google Scholar 

  • Daglia M, Papetti A, Grisoli P, Aceti C, Spini V, Dacarro C, Gazzani G (2007b) Isolation, identification, and quantification of roasted coffee antibacterial compounds. J Agric Food Chem 55(25):10208–10213

    Article  PubMed  CAS  Google Scholar 

  • Daniels JW, Molé PA, Shaffrath JD, Stebbins CL (1998) Effects of caffeine on blood pressure, heart rate, and forearm blood flow during dynamic leg exercise. J Appl Physiol 85(1):154–159

    PubMed  CAS  Google Scholar 

  • DeFilipps RA, Maina SL, Crepin J (2004). Medicinal plants of Guianas (Guyana, Surinam, French Guiana). Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC

    Google Scholar 

  • del Castillo MD, Ames JM, Gordon MH (2002) Effect of roasting on the antioxidant activity of coffee brews. J Agric Food Chem 50(13):3698–4003

    Article  PubMed  CAS  Google Scholar 

  • Dellalibera O, Lemaire B, Lafay S (2006) Svetol (R), green coffee extract, induces weight loss and increases the lean to fat mass ratio in volunteers with overweight problem. Phytotherapie 4(4):194–197

    Article  Google Scholar 

  • Devasagayam TP, Kamat JP, Mohan H, Kesavan PC (1996) Caffeine as an antioxidant: inhibition of lipids peroxidation induces by reactive oxygen species. Biochem Biophys Acta 1282(1):63–70

    Article  PubMed  Google Scholar 

  • Dewey KG, Romero-Abal ME, Quan de Serrano J, Bulux J, Peerson JM, Engle P, Solomons NW (1997a) A randomized intervention study of the effects of discontinuing coffee intake on growth and morbidity of iron-deficient Guatemalan toddlers. J Nutr 127(2):306–313

    PubMed  CAS  Google Scholar 

  • Dewey KG, Romero-Abal ME, Quan de Serrano J, Bulux J, Peerson JM, Engle P, Solomons NW (1997b) Effects of discontinuing coffee intake on iron status of iron-deficient Guatemalan toddlers: a randomized intervention study. Am J Clin Nutr 66(1):168–176

    PubMed  CAS  Google Scholar 

  • Dias RC, Campanha FG, Vieira LG, Ferreira LP, Pot D, Marraccini P, De Toledo BM (2010) Evaluation of kahweol and cafestol in coffee tissues and roasted coffee by a new high-performance liquid chromatography methodology. J Agric Food Chem 58(1):88–93

    Article  PubMed  CAS  Google Scholar 

  • Dias EC, Pereira RGFA, Borém FM, Mendes E, de Lim RR, Fernandes JO, Casal S (2012) Biogenic amine profile in unripe arabica coffee beans processed according to dry and wet methods. J Agric Food Chem 60(16):4120–4125

    Article  PubMed  CAS  Google Scholar 

  • Dogasaki C, Shindo T, Furuhata K, Fukuyama M (2002) Identification of chemical structure of antibacterial components against Legionella pneumophila in a coffee beverage. Yakugaku Zasshi 122(7):487–494 (In Japanese)

    Article  PubMed  CAS  Google Scholar 

  • Dórea JG, da Costa TH (2005) Is coffee a functional food? Br J Nutr 93(6):773–782

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Melchert HU, Knopf H, Braemer-Hauth M, Pabel E (2007) Association of serum caffeine concentrations with serum glucose levels in caffeine-drug users and non-users - results of German National Health Surveys. Diabetes Obes Metab 9(5):756–758

    Article  PubMed  CAS  Google Scholar 

  • Duarte MP, Laires A, Gaspar J, Leão D, Oliveira JS, Rueff J (1999) Genotoxicity of instant coffee: possible involvement of phenolic compounds. Mutat Res 442(1):43–51

    Article  PubMed  CAS  Google Scholar 

  • Duarte SMDS, de Abreu CMP, de Menezes HC, dos Santos MH, Gouvêa CMCP (2005) Effect of processing and roasting on the antioxidant activity of coffee brews. Ciênc Technol Aliment 25(2):387–393

    Article  CAS  Google Scholar 

  • Duarte GS, Pereira AA, Farah A (2010) Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chem 118(3):851–855

    Article  CAS  Google Scholar 

  • Duke JA (1983) Coffea arabica L. Handbook of energy crops. Unpublished http://www.hort.purdue.edu/newcrop/duke_energy/coffea_arabica.html

  • El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM (2000) The anxiogenic-like effect of caffeine in two experimental procedures measuring anxiety in the mouse is not shared by selective A(2A) adenosine receptor antagonists. Psychopharmacology (Berl) 148(2):153–163

    Article  CAS  Google Scholar 

  • Emura M, Nohara I, Toyoda T, Kanisawa T (1997) The volatile constituents of the coffee flower (Coffea arabica L.). Flav Fragr J 12:9–13

    Article  CAS  Google Scholar 

  • Engle PL, Vas Dias T, Howard I, Romero-Abal ME, Quan de Serrano J, Bulux J, Solomons NW, Dewey KG (1999) Effects of discontinuing coffee intake on iron deficient Guatemalan toddlers’ cognitive development and sleep. Early Hum Dev 53(3):251–269

    Article  PubMed  CAS  Google Scholar 

  • Eskelinen MH, Kivipelto M (2010) Caffeine as a protective factor in dementia and Alzheimer’s disease. J Alzheimers Dis 20(Suppl 1):S167–S174

    PubMed  CAS  Google Scholar 

  • Eskelinen M, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M (2009) Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16(1):85–91

    PubMed  CAS  Google Scholar 

  • Facheris MF, Schneider NK, Lesnick TG, de Andrade M, Cunningham JM, Rocca WA, Maraganore DM (2008) Coffee, caffeine-related genes, and Parkinson’s disease: a case-control study. Mov Disord 23(14):2033–2040

    Article  PubMed  Google Scholar 

  • Fan L, Pandey A, Mohan R, Soccol CR (2000) Use of various coffee industry residues for the cultivation of Pleurotus ostreatus in solid state fermentation. Acta Biotechnol 20:41–52

    Article  Google Scholar 

  • FAO (2012) FAO STAT. Food and agricultural organization of United Nations: economic and social department: the statistical division. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Farah A, Donangelo CM (2006) Phenolic compounds in coffee. Braz J Plant Physiol 18(1):23–36

    Article  CAS  Google Scholar 

  • Farah A, de Paulis T, Trugo LC, Martin PR (2005) Effect of roasting on the formation of chlorogenic acid lactones in coffee. J Agric Food Chem 53(5):1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Farah A, de Paulis T, Moreira DP, Trugo LC, Martin PR (2006) Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffees. J Agric Food Chem 54(2):374–381

    Article  PubMed  CAS  Google Scholar 

  • Farah A, Monteiro M, Donangelo CM, Lafay S (2008) Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr 138(12):2309–2315

    Article  PubMed  CAS  Google Scholar 

  • Ferrazzano GF, Amato I, Ingenito A, De Natale A, Pollio A (2009) Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia 80(5):255–262

    Article  PubMed  CAS  Google Scholar 

  • Firestone P, Poitras-Wright H, Douglas V (1978) The effects of caffeine on hyperactive children. J Learn Disabil 11(3):133–141

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Reimann S, Trovatto V, Redgwell RJ (2001) Polysaccharides of green Arabica and Robusta coffee beans. Carbohydr Res 33(91):93–101

    Article  Google Scholar 

  • Floegel A, Pischon T, Bergmann MM, Teucher B, Kaaks R, Boeing H (2012) Coffee consumption and risk of chronic disease in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany study. Am J Clin Nutr 95(4):901–908

    Article  PubMed  CAS  Google Scholar 

  • Foundation for Revitalisation of Local Health Traditions (2008) FRLHT Database. http://envis.frlht.org

  • Freedman ND, Everhart JE, Lindsay KL, Ghany MG, Curto TM, Shiffman ML, Lee WM, Lok AS, Di Bisceglie AM, Bonkovsky HL, Hoefs JC, Dienstag JL, Morishima C, Abnet CC, Sinha R, HALT-C Trial Group (2009) Coffee intake is associated with lower rates of liver disease progression in chronic hepatitis C. Hepatology 50(5):1360–1369

    Article  PubMed  CAS  Google Scholar 

  • Freedman ND, Curto TM, Lindsay KL, Wright EC, Sinha R, Everhart JE, HALT-C Trial Group (2011) Coffee consumption is associated with response to peginterferon and ribavirin therapy in patients with chronic hepatitis C. Gastroenterology 140(7):1961–1969

    Article  PubMed  CAS  Google Scholar 

  • Fujioka K, Shibamoto T (2006) Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity. J Agric Food Chem 54(16):6054–6058

    Article  PubMed  CAS  Google Scholar 

  • Fujioka K, Shibamoto T (2008) Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem 106(1):217–221

    Article  CAS  Google Scholar 

  • Fung VA, Cameron TP, Hughes TJ, Kirby PE, Dunkel VC (1988) Mutagenic activity of some coffee flavor ingredients. Mutat Res 204(2):219–228

    Article  PubMed  CAS  Google Scholar 

  • Fuster MD, Mitchell AE, Ochi H, Shibamoto T (2000) Antioxidative activities of heterocyclic compounds formed in brewed coffee. J Agric Food Chem 48:5600–5603

    Article  PubMed  CAS  Google Scholar 

  • Galeone C, Turati F, La Vecchia C, Tavani A (2010) Coffee consumption and risk of colorectal cancer: a meta-analysis of case-control studies. Cancer Causes Control 21(11):1949–1959

    Article  PubMed  Google Scholar 

  • Gelber RP, Petrovitch H, Masaki KH, Ross GW, White LR (2011) Coffee intake in midlife and risk of dementia and its neuropathologic correlates. J Alzheimers Dis 23(4):607–615

    PubMed  CAS  Google Scholar 

  • Giovannucci E (1998) Meta-analysis of coffee consumption and risk of colorectal cancer. Am J Epidemiol 147(11):1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Giri A, Sturgeon SR, Luisi N, Bertone-Johnson E, Balasubramanian R, Reeves KW (2011) Caffeinated coffee, decaffeinated coffee and endometrial cancer risk: a prospective cohort study among US postmenopausal women. Nutrients 3(11):937–950

    Article  PubMed  Google Scholar 

  • Glei M, Kirmse A, Habermann N, Persin C, Pool-Zobel BL (2006) Bread enriched with green coffee extract has chemoprotective and antigenotoxic activities in human cells. Nutr Cancer 56(2):182–192

    Article  PubMed  CAS  Google Scholar 

  • Gniechwitz D, Reichardt N, Ralph J, Blaut M, Steinhart H, Bunzel M (2008) Isolation and characterisation of a coffee melanoidin fraction. J Sci Food Agric 88:2153–2160

    Article  CAS  Google Scholar 

  • Govaerts R, Ruhsam K, Andersson L, Robbrecht E, Bridson D, Davis A, Schnazer I, Sonké B(2011) World checklist of Rubiaceae. The board of trustees of the royal botanic gardens, Kew. Published on the Internet http://www.kew.org/wcsp/

  • Greenberg JA, Owen DR, Geliebter A (2010) Decaffeinated coffee and glucose metabolism in young men. Diabetes Care 33(2):278–280

    Article  PubMed  CAS  Google Scholar 

  • Gressner OA, Lahme B, Rehbein K, Siluschek M, Weiskirchen R, Gressner AM (2008) Pharmacological application of caffeine inhibits TGF-beta-stimulated connective tissue growth factor expression in hepatocytes via PPARgamma and SMAD2/3-dependent pathways. J Hepatol 49(5):758–767

    Article  PubMed  CAS  Google Scholar 

  • Gressner OA, Lahme B, Siluschek M, Gressner AM (2009) Identification of paraxanthine as the most potent caffeine-derived inhibitor of connective tissue growth factor expression in liver parenchymal cells. Liver Int 29(6):886–897

    Article  PubMed  CAS  Google Scholar 

  • Grieve M (1971) A modern herbal. Penguin, 2 vols. Dover publications, New York, 919 pp

    Google Scholar 

  • Grosch W, Mayer F (2000) Release of odorants from roasted coffee. In: Flavor release. ACS symposium series, vol 763, Chapter 35, pp 430–438

    Google Scholar 

  • Grosch W, Czerny M, Mayer F, Moors A (2000) Sensory studies on the key odorants of roasted coffee. In: Caffeinated beverages. ACS symposium series, vol 754, Chapter 21, pp 202–209

    Google Scholar 

  • Gross G, Jaccaud E, Huggett AC (1997) Analysis of the content of the diterpenes cafestol and kahweol in coffee brews. Food Chem Toxicol 35(6):547–554

    Article  PubMed  CAS  Google Scholar 

  • Grubben MJ, Van Den Braak CC, Broekhuizen R, De Jong R, Van Rijt L, De Ruijter E, Peters WH, Katan MB, Nagengast FM (2000) The effect of unfiltered coffee on potential biomarkers for colonic cancer risk in healthy volunteers: a randomized trial. Aliment Pharmacol Ther 14(9):1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Gunter MJ, Schaub JA, Xue X, Freedman ND, Gaudet MM, Rohan TE, Hollenbeck AR, Sinha R (2011) A prospective investigation of coffee drinking and endometrial cancer incidence. Int J Cancer 131(4):E530–E536. doi:10.1002/ijc.26482

    Article  PubMed  CAS  Google Scholar 

  • He P, Noda Y, Sugiyama K (2001) Suppressive effect of coffee on lipopolysaccharide-induced hepatitis in D-galactosamine-sensitized rats. Biosci Biotechnol Biochem 65(8):1924–1927

    Article  PubMed  CAS  Google Scholar 

  • Heatherley SV, Hancock KMF, Rogers PJ (2006) Psychostimulant and other effects of caffeine in 9- to 11-year-old children. J Child Psychol Psychiatry 47:135–142

    Article  PubMed  Google Scholar 

  • Hečimović I, Belščak-Cvitanović A, Horžić D, Komes D (2011) Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chem 129:991–1000

    Article  CAS  Google Scholar 

  • Henry-Vitrac C, Ibarra A, Roller M, Mérillon JM, Vitrac X (2010) Contribution of chlorogenic acids to the inhibition of human hepatic glucose-6-phosphatase activity in vitro by Svetol, a standardized decaffeinated green coffee extract. J Agric Food Chem 58(7):4141–4144

    Article  PubMed  CAS  Google Scholar 

  • Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46(2):101–123

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Schieberle P (2002) Chemical interactions between odor-active thiols and melanoidins involved in the aroma staling of coffee beverages. J Agric Food Chem 50(2):319–326

    Article  PubMed  CAS  Google Scholar 

  • Holick CN, Smith SG, Giovannucci E, Michaud DS (2011) Coffee, tea, caffeine intake and risk of adult glioma in 3 prospective cohort studies. Cancer Epidemiol Biomarkers Prev 19(1):39–47

    Article  CAS  Google Scholar 

  • Houessou JK, Benac C, Delteil C, Camel V (2005) Determination of polycyclic aromatic hydrocarbons in coffee brew using solid-phase extraction. J Agric Food Chem 53(4):871–879

    Article  PubMed  CAS  Google Scholar 

  • Houessou JK, Maloug S, Leveque AS, Delteil C, Heyd B, Camel V (2007) Effect of roasting conditions on the polycyclic aromatic hydrocarbon content in ground Arabica coffee and coffee brew. J Agric Food Chem 55(23):9719–9726

    Article  PubMed  CAS  Google Scholar 

  • Houessou JK, Goujot D, Heyd B, Camel V (2008) Modeling the formation of some polycyclic aromatic hydrocarbons during the roasting of Arabica coffee samples. J Agric Food Chem 56(10):3648–3656

    Article  PubMed  CAS  Google Scholar 

  • Huber WW, Parzefall W (2005) Modification of N-acetyltransferases and glutathione S-transferases by coffee components: possible relevance for cancer risk. Methods Enzymol 401:307–341

    Article  PubMed  CAS  Google Scholar 

  • Huber WW, Prustomersky S, Delbanco E, Uhl M, Scharf G, Turesky RJ, Thier R, Schulte-Hermann R (2002) Enhancement of the chemoprotective enzymes glucuronosyl transferase and glutathione transferase in specific organs of the rat by the coffee components kahweol and cafestol. Arch Toxicol 76(4):209–217

    Article  PubMed  CAS  Google Scholar 

  • Huber WW, Teitel CH, Coles BF, King RS, Wiese FW, Kaderlik KR, Casciano DA, Shaddock JG, Mulder GJ, Ilett KF, Kadlubar FF (2004) Potential chemoprotective effects of the coffee components kahweol and cafestol palmitates via modification of hepatic N-acetyltransferase and glutathione S-transferase activities. Environ Mol Mutagen 44(4):265–276

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR, Hale KL (1998) Behavioral effects of caffeine and other methylxanthines on children. Exp Clin Psychopharmacol 6(1):87–95

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Tsujimoto K, Uozaki M, Nishide M, Suzuki Y, Koyama AH, Yamasaki H (2011) Inhibition of multiplication of herpes simplex virus by caffeic acid. Int J Mol Med 28(4):595–598

    PubMed  CAS  Google Scholar 

  • Illy A, Viani R (eds) (1995) Espresso coffee: the chemistry of quality. Academic, London, 253 pp

    Google Scholar 

  • Inoue M, Yoshimi I, Sobue T, Tsugane S, JPHC Study Group (2005) Influence of coffee drinking on subsequent risk of hepatocellular carcinoma: a prospective study in Japan. J Natl Cancer Inst 97(4):293–300

    Article  PubMed  CAS  Google Scholar 

  • Je Y, Liu W, Giovannucci E (2009) Coffee consumption and risk of colorectal cancer: a systematic review and meta-analysis of prospective cohort studies. Int J Cancer 124(7):1662–1668

    Article  PubMed  CAS  Google Scholar 

  • Je Y, Hankinson SE, Tworoger SS, Devivo I, Giovannucci E (2012) A prospective cohort study of coffee consumption and risk of endometrial cancer over a 26-year follow-up. Cancer Epidemiol Biomarkers Prev 20(12):2487–2495

    Article  Google Scholar 

  • Jeng I, Klemm N (1984) Stimulation of fatty acid release in glioblastoma cells by caffeine. Biochem Int 9(5):631–635

    PubMed  CAS  Google Scholar 

  • Johnson S, Koh WP, Wang R, Govindarajan S, Yu MC, Yuan JM (2011) Coffee consumption and reduced risk of hepatocellular carcinoma: findings from the Singapore Chinese Health Study. Cancer Causes Control 22(3):503–510

    Article  PubMed  Google Scholar 

  • Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78(4):728–733

    PubMed  CAS  Google Scholar 

  • Jura YH, Townsend MK, Curhan GC, Resnick NM, Grodstein F (2011) Caffeine intake, and the risk of stress, urgency and mixed urinary incontinence. J Urol 185(5):1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Kalda A, Yu L, Oztas E, Chen JF (2006) Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci 248(1–2):9–15

    Article  PubMed  CAS  Google Scholar 

  • Kang SS, Han KS, Ku BM, Lee YK, Hong J, Shin HY, Almonte AG, Woo DH, Brat DJ, Hwang EM, Yoo SH, Chung CK, Park SH, Paek SH, Roh EJ, Lee SJ, Park JY, Traynelis SF, Lee CJ (2010) Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival. Cancer Res 70(3):1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Karapetian GK, Engels HJ, Gretebeck KA, Gretebeck RJ (2012) Effect of caffeine on LT, VT and HRVT. Int J Sports Med 33(7):507–513

    Article  PubMed  CAS  Google Scholar 

  • Klatsky AL, Morton C, Udaltsova N, Friedman GD (2006) Coffee, cirrhosis, and transaminase enzymes. Arch Intern Med 166(11):1190–1195

    Article  PubMed  Google Scholar 

  • Konishi Y, Kobayashi S (2004) Transepithelial transport of chlorogenic acid, caffeic acid, and their colonic metabolites in intestinal caco-2 cell monolayers. J Agric Food Chem 52(9):2518–2526

    Article  PubMed  CAS  Google Scholar 

  • Koshiro Y, Jackson MC, Katahira R, Wang ML, Nagai C, Ashihara H (2007) Biosynthesis of chlorogenic acids in growing and ripening fruits of Coffea arabica and Coffea canephora plants. Z Naturforsch C 62(9–10):731–742

    PubMed  CAS  Google Scholar 

  • Kumazawa K, Masuda H (2003a) Identification of odor-active 3-mercapto-3-methylbutyl acetate in volatile fraction of roasted coffee brew isolated by steam distillation under reduced pressure. J Agric Food Chem 51(10):3079–3082

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa K, Masuda H (2003b) Investigation of the change in the flavor of a coffee drink during heat processing. J Agric Food Chem 51(9):2674–2678

    Article  PubMed  CAS  Google Scholar 

  • Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Jo TH, Park YI, Lee CK, Kim YB, Lee SY, Jang CG (2010) Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 649(1–3):210–217

    Article  PubMed  CAS  Google Scholar 

  • Lafay S, Morand C, Manach C, Besson C, Scalbert A (2006) Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. Br J Nutr 96(1):39–46

    Article  PubMed  CAS  Google Scholar 

  • Lane JD, Hwang AL, Feinglos MN, Surwit RS (2007) Exaggeration of postprandial hyperglycemia in patients with type 2 diabetes by administration of caffeine in coffee. Endocr Pract 13(3):239–243

    PubMed  Google Scholar 

  • Larsson SC, Wolk A (2007) Coffee consumption and risk of liver cancer: a meta-analysis. Gastroenterology 132(5):1740–1745

    Article  PubMed  Google Scholar 

  • Larsson SC, Bergkvist L, Giovannucci E, Wolk A (2006) Coffee consumption and incidence of colorectal cancer in two prospective cohort studies of Swedish women and men. Am J Epidemiol 163(7):638–644

    Article  PubMed  Google Scholar 

  • Lashermes P, Benoít B, Hervé E (2009) Breeding coffee (Coffea arabica) for sustainable production. In Mohan Jain S, Priyadarshan PM (eds) Breeding Plantation Tree Crops: Tropical Species, pp 525–543

    Google Scholar 

  • Lashermes P, Combes MC, Cros J, Trouslot P, Anthony F, Charrier A (1995) Origin and genetic diversity of Coffea arabica l. Based on DNA molecular markers Scienti­fique International sur le Café, 16. Kyoto (Japón), París, Francia, 9–14 Avril 1995, ASIC, pp 528–535

    Google Scholar 

  • Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261(2):259–266

    Article  PubMed  CAS  Google Scholar 

  • Lee KG, Shibamoto T (2002) Analysis of volatile components isolated from Hawaiian green coffee beans (Coffea arabica L.). Flavour Frag J 17:349–351

    Article  CAS  Google Scholar 

  • Lee KJ, Inoue M, Otani T, Iwasaki M, Sasazuki S, Tsugane S, JPHC Study Group (2007) Coffee consumption and risk of colorectal cancer in a population-based prospective cohort of Japanese men and women. Int J Cancer 121(6):1312–1318

    Article  PubMed  CAS  Google Scholar 

  • Lercker G, Frega N, Bocci F, Rodriguez-Estrada MT (1995) High resolution gas chromatographic determination of diterpenic alcohols and sterols in coffee lipids. Chromatographia 41:29–33

    CAS  Google Scholar 

  • Levitan EB, Ahmed HN, Mittleman MA, Wolk A (2011) Coffee consumption and incidence of heart failure in women. Circ Heart Fail 4(4):414–418

    Article  PubMed  CAS  Google Scholar 

  • Liew SL, Nik Ismail ND, Osman H (2001) Determination of coffee content in coffee mixtures. Malays J Anal Sci 7(2):327–332

    Google Scholar 

  • Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian study of health and aging. Am J Epidemiol 156:445–453

    Article  PubMed  Google Scholar 

  • Liu R, Guo X, Park Y, Huang X, Sinha R, Freedman ND, Hollenbeck AR, Blair A, Chen H (2012) Caffeine intake, smoking, and risk of Parkinson disease in men and women. Am J Epidemiol 175(11):1200–1207

    Article  PubMed  Google Scholar 

  • López-Galilea I, Andueza S, Leonardo I, Peña MP, Cid C (2006) Influence of torrefacto roast on antioxidant and pro-oxidant activity of coffee. Food Chem 94(1):75–80

    Article  CAS  Google Scholar 

  • Lopez-Garcia E, van Dam RM, Rajpathak S, Willett WC, Manson JE, Hu FB (2006) Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 83(3):674–680

    PubMed  CAS  Google Scholar 

  • Luo J, Inoue M, Iwasaki M, Sasazuki S, Otani T, Ye W, Tsugane S, JPHC Study Group (2007) Green tea and coffee intake and risk of pancreatic cancer in a large-scale, population-based cohort study in Japan (JPHC study). Eur J Cancer Prev 16(6):542–548

    Article  PubMed  Google Scholar 

  • MacKenzie T, Comi R, Sluss P, Keisari R, Manwar S, Kim J, Larson R, Baron JA (2007) Metabolic and hormonal effects of caffeine: randomized, double-blind, placebo-controlled crossover trial. Metabolism 56(12):1694–1698

    Article  PubMed  CAS  Google Scholar 

  • Mahmud A, Feely J (2001) Acute effect of caffeine on arterial stiffness and aortic pressure waveform. Hypertension 38(2):227–231

    Article  PubMed  CAS  Google Scholar 

  • Majer BJ, Hofer E, Cavin C, Lhoste E, Uhl M, Glatt HR, Meinl W, Knasmüller S (2005) Coffee diterpenes prevent the genotoxic effects of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and N-nitrosodimethylamine in a human derived liver cell line (HepG2). Food Chem Toxicol 43(3):433–441

    Article  PubMed  CAS  Google Scholar 

  • Martins ACCL, Gloria MBA (2010) Changes on the levels of serotonin precursors – tryptophan and 5-hydroxytryptophan – during roasting of Arabica and Robusta coffee. Food Chem 118(3):529–533

    Article  CAS  Google Scholar 

  • Matsuda Y, Kobayashi M, Yamauchi R, Ojika M, Hiramitsu M, Inoue T, Katagiri T, Murai A, Horio F (2012) Coffee and caffeine improve insulin sensitivity and glucose tolerance in C57BL/6 J mice fed a high-fat diet. Biosci Biotechnol Biochem 75(12):2309–2315

    Article  CAS  Google Scholar 

  • Matulová M, Capek P, Kaneko S, Navarini L, Liverani FS (2011) Structure of arabinogalactan oligosaccharides derived from arabinogalactan-protein of Coffea arabica instant coffee powder. Carbohydr Res 346(8):1029–1036

    Article  PubMed  CAS  Google Scholar 

  • McCarty MF (2005) A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med Hypotheses 64(4):848–853

    Article  PubMed  CAS  Google Scholar 

  • Mensink RP, Lebbink WJ, Lobbezoo IE, Weusten-Van der Wouw MP, Zock PL, Katan MB (1995) Diterpene composition of oils from Arabica and Robusta coffee beans and their effects on serum lipids in man. J Intern Med 237(6):543–550

    Article  PubMed  CAS  Google Scholar 

  • Michaud DS, Gallo V, Schlehofer B, Tjønneland A, Olsen A, Overvad K, Dahm CC, Teucher B, Lukanova A, Boeing H, Schütze M, Trichopoulou A, Lagiou P, Kyrozis A, Sacerdote C, Krogh V, Masala G, Tumino R, Mattiello A, Bueno-de-Mesquita HB, Ros MM, Peeters PH, van Gils CH, Skeie G, Engeset D, Parr CL, Ardanaz E, Chirlaque MD, Dorronsoro M, Sánchez MJ, Argüelles M, Jakszyn P, Nilsson LM, Melin BS, Manjer J, Wirfält E, Khaw KT, Wareham N, Allen NE, Key TJ, Romieu I, Vineis P, Riboli E (2010) Coffee and tea intake and risk of brain tumors in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study. Am J Clin Nutr 92(5):1145–1150

    Article  PubMed  CAS  Google Scholar 

  • Michels KB, Willett WC, Fuchs CS, Giovannucci E (2005) Coffee, tea, and caffeine consumption and incidence of colon and rectal cancer. J Natl Cancer Inst 97(4):282–292

    Article  PubMed  CAS  Google Scholar 

  • Moisey LL, Kacker S, Bickerton AC, Robinson LE, Graham TE (2008) Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men. Am J Clin Nutr 87(5):1254–1261

    PubMed  CAS  Google Scholar 

  • Moisey LL, Robinson LE, Graham TE (2010) Consumption of caffeinated coffee and a high carbohydrate meal affects postprandial metabolism of a subsequent oral glucose tolerance test in young, healthy males. Br J Nutr 103(6):833–841

    Article  PubMed  CAS  Google Scholar 

  • Molloy JW, Calcagno CJ, Williams CD, Jones FJ, Torres DM, Harrison SA (2012) Association of coffee and caffeine consumption with fatty liver disease, non-alcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology 55:429–436

    Article  PubMed  CAS  Google Scholar 

  • Monteiro MC, Trugo LC (2005) Determination of bioactive compounds in Brazilian roasted coffee. Quim Nova 28:637–641

    Article  CAS  Google Scholar 

  • Montella M, Polesel J, La Vecchia C, Dal Maso L, Crispo A, Crovatto M, Casarin P, Izzo F, Tommasi LG, Talamini R, Franceschi S (2007) Coffee and tea consumption and risk of hepatocellular carcinoma in Italy. Int J Cancer 120(7):1555–1559

    Article  PubMed  CAS  Google Scholar 

  • Moon JK, Shibamoto T (2009) Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans. J Agric Food Chem 57(13):5823–5831

    Article  PubMed  CAS  Google Scholar 

  • Moon JK, Shibamoto T (2010) Formation of volatile chemicals from thermal degradation of less volatile coffee components: quinic acid, caffeic acid, and chlorogenic acid. J Agric Food Chem 58(9):5465–5470

    Article  PubMed  CAS  Google Scholar 

  • Moon JK, Yoo HS, Shibamoto T (2009) Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity. J Agric Food Chem 57(12):5365–5369

    Article  PubMed  CAS  Google Scholar 

  • Moreira DP, Monteiro MC, Ribeiro-Alves M, Donangelo CM, Trugo LC (2005) Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages. J Agric Food Chem 53(5):1399–1402

    Article  PubMed  CAS  Google Scholar 

  • Morikawa CK, Saigusa M (2011) Recycling coffee grounds and tea leaf wastes to improve the yield and mineral content of grains of paddy rice. J Sci Food Agric 91(11):2108–2111

    Article  PubMed  CAS  Google Scholar 

  • Mueller U, Sauer T, Weigel I, Pichner R, Pischetsrieder M (2011) Identification of H2O2 as a major antimicrobial component in coffee. Food Funct 2(5):265–272

    Article  PubMed  CAS  Google Scholar 

  • Mullen W, Nemzer B, Ou B, Stalmach A, Hunter J, Clifford MN, Combet E (2011) The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. J Agric Food Chem 59(8):3754–3762

    Article  PubMed  CAS  Google Scholar 

  • Muñoz LM, Lönnerdal B, Keen CL, Dewey KG (1988) Coffee consumption as a factor in iron deficiency anemia among pregnant women and their infants in Costa Rica. Am J Clin Nutr 48(3):645–651

    PubMed  Google Scholar 

  • Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T (2011) Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6 J mice. Am J Physiol Endocrinol Metab 300(1):E122–E133

    Article  PubMed  CAS  Google Scholar 

  • Muriel P, Arauz J (2010) Coffee and liver diseases. Fitoterapia 81(5):297–305

    Article  PubMed  CAS  Google Scholar 

  • Murkovic M, Bornik MA (2007) Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol Nutr Food Res 51(4):390–394

    Article  PubMed  CAS  Google Scholar 

  • Murkovic M, Derler K (2006) Analysis of amino acids and carbohydrates in green coffee. J Biochem Biophys Methods 69(1–2):25–32

    Article  PubMed  CAS  Google Scholar 

  • Muscher RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst (Neth) 51(2):131–139

    Google Scholar 

  • Naganuma T, Kuriyama S, Akhter M, Kakizaki M, Nakaya N, Matsuda-Ohmori K, Shimazu T, Fukao A, Tsuji I (2007) Coffee consumption and the risk of colorectal cancer: a prospective cohort study in Japan. Int J Cancer 120(7):1542–1547

    Article  PubMed  CAS  Google Scholar 

  • Nakaso K, Ito S, Nakashima K (2008) Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson’s disease model of SH-SY5Y cells. Neurosci Lett 432(2):146–150

    Article  PubMed  CAS  Google Scholar 

  • Nardini M, Cirillo E, Natella F, Scaccini C (2002) Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 50(20):5735–5741

    Article  PubMed  CAS  Google Scholar 

  • Narod SA, De Sanjosé S, Victora C (1991) Coffee during pregnancy: a reproductive hazard? Am J Obstet Gynecol 164(4):1109–1114

    PubMed  CAS  Google Scholar 

  • Natella F, Nardini M, Belelli F, Scaccini C (2007) Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans. Am J Clin Nutr 86(3):604–609

    PubMed  CAS  Google Scholar 

  • Nehlig A, Debry G (1994a) Effects of coffee and caffeine on fertility, reproduction, lactation, and development Review of human and animal data. J Gynecol Obstet Biol Reprod 23(3):241–256 (In French)

    CAS  Google Scholar 

  • Nehlig A, Debry G (1994b) Potential teratogenic and neurodevelopmental consequences of coffee and caffeine exposure: a review on human and animal data. Neurotoxicol Teratol 16(6):531–543

    Article  PubMed  CAS  Google Scholar 

  • Nishimura H, Nakai K (1960) Congenital malformations in offspring of mice treated with caffeine. Proc Soc Exp Biol Med 104:140–142

    PubMed  CAS  Google Scholar 

  • Nkondjock A (2009) Coffee consumption and the risk of cancer: an overview. Cancer Lett 277(2):121–125

    Article  PubMed  CAS  Google Scholar 

  • Nogueira M, Trugo LC (2003) Distribuição de isômeros de ácido clorogênico e teores de cafeína e trigonelina em cafés solúveis Brasileiros. Ciênc Tecnol Alim 23:296–299 (Chlorogenic acid isomers, caffeine and trigonellin contents in Brazilian instant coffee)

    Article  CAS  Google Scholar 

  • Nosáľová G, Prisenžňáková L, Paulovičová E, Capek P, Matulová M, Navarini L, Liverani FS (2011) Antitussive and immunomodulating activities of instant coffee arabinogalactan-protein. Int J Biol Macromol 49(4):493–497

    Article  PubMed  CAS  Google Scholar 

  • Nunes FM, Coimbra MA (2001) Chemical characterization of the high molecular weight material extracted with hot water from green and roasted arabica coffee. J Agric Food Chem 49(4):1773–1782

    Article  PubMed  CAS  Google Scholar 

  • Nunes FM, Coimbra MA (2002a) Chemical characterization of galactomannans and arabinogalactans from two arabica coffee infusions as affected by the degree of roast. J Agric Food Chem 50(6):1429–1434

    Article  PubMed  CAS  Google Scholar 

  • Nunes FM, Coimbra MA (2002b) Chemical characterization of the high-molecular-weight material extracted with hot water from green and roasted robusta coffees as affected by the degree of roast. J Agric Food Chem 50(24):7046–7052

    Article  PubMed  CAS  Google Scholar 

  • Nunes FM, Domingues MR, Coimbra MA (2005) Arabinosyl and glucosyl residues as structural features of acetylated galactomannans from green and roasted coffee infusions. Carbohydr Res 340(10):1689–1698

    Article  PubMed  CAS  Google Scholar 

  • Nunes FM, Reis A, Domingues MR, Coimbra MA (2006) Characterization of galactomannan derivatives in roasted coffee beverages. J Agric Food Chem 54(9):3428–3439

    Article  PubMed  CAS  Google Scholar 

  • Ogita S, Uefugi H, Yamaguchi Y, Koizumi N, Sano H (2003) RNA interference: producing decaffeinated coffee plants. Nature 423:823

    Article  PubMed  CAS  Google Scholar 

  • Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C, Lin X, Zhang G, Arendash GW (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47(1):82–96

    Article  PubMed  CAS  Google Scholar 

  • Olthof MR, Hollman PCH, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131(1):66–71

    PubMed  CAS  Google Scholar 

  • Onakpoya I, Terry R, Ernst E (2011) The use of green coffee extract as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials Gastroenterol Res Pract 2011: Article ID 382852

    Google Scholar 

  • Ong KW, Hsu A, Tan BK (2012) Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 7(3):e32718

    Article  PubMed  CAS  Google Scholar 

  • Orecchio S, Ciotti VP, Culotta L (2009) Polycyclic aromatic hydrocarbons (PAHs) in coffee brew samples: analytical method by GC-MS, profile, levels and sources. Food Chem Toxicol 47(4):819–826

    Article  PubMed  CAS  Google Scholar 

  • Pacific Island Ecosystems at Risk (PIER) (2010) Coffea arabica L., Rubiaceae. http://www.hear.org/pier/species/coffea_arabica.htm

  • Palmer DM, Kitchin JS (2010) A double-blind, randomized, controlled clinical trial evaluating the efficacy and tolerance of a novel phenolic antioxidant skin care system containing Coffea arabica and concentrated fruit and vegetable extracts. J Drugs Dermatol 9(12):1480–1487

    PubMed  Google Scholar 

  • Pelucchi C, Tavani A, La Vecchia C (2008) Coffee and alcohol consumption and bladder cancer. Scand J Urol Nephrol 42(Suppl 218):37–44

    Article  Google Scholar 

  • Pereira MA, Parker ED, Folsom AR (2006) Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch Intern Med 166(12):1311–1316

    Article  PubMed  Google Scholar 

  • Perrone D, Farah A, Donangelo CM, de Paulis T, Martin PR (2008) Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem 106(2):859–867

    Article  CAS  Google Scholar 

  • Peterson S, Yuan JM, Koh WP, Sun CL, Wang R, Turesky RJ, Yu MC (2010) Coffee intake and risk of colorectal cancer among Chinese in Singapore: the Singapore Chinese Health Study. Nutr Cancer 62(1):21–29

    Article  PubMed  Google Scholar 

  • Picard N, Guénin S, Larnicol N, Perrin Y (2008) Maternal caffeine ingestion during gestation and lactation influences respiratory adaptation to acute alveolar hypoxia in newborn rats and adenosine A2A and GABA A receptor mRNA transcription. Neuroscience 156(3):630–639

    Article  PubMed  CAS  Google Scholar 

  • Pimentel GD, Zemdegs JCS, Theodoro JA, João F, Mota JF (2009) Does long-term coffee intake reduce type 2 diabetes mellitus risk? Diabetol Metab Syndr 1:6

    Article  PubMed  CAS  Google Scholar 

  • Pollack AZ, Loius GMB, Sundaram R, Lum KJ (2010) Caffeine consumption and miscarriage: a prospective cohort study. Fertil Steril 93(1):304–306

    Article  PubMed  CAS  Google Scholar 

  • Pollak CP, Bright D (2003) Caffeine consumption and weekly sleep patterns in US seventh-, eighth-, and ninth-graders. Pediatrics 111(1):42–46

    Article  PubMed  Google Scholar 

  • Popat RA, Van Den Eeden SK, Tanner CM, Kamel F, Umbach DM, Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H, Topol B, McGuire V, Costello S, Manthripragada AD, Southwick A, Myers RM, Nelson LM (2011) Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson’s disease. Eur J Neurol 18(5):756–765

    Article  PubMed  CAS  Google Scholar 

  • Post SM, de Wit ECM, Princen HMG (1997) Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase in rat hepatocytes. Arterioscler Thromb Vasc Biol 17:3064–3070

    Article  PubMed  CAS  Google Scholar 

  • Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV (2011) Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 349(1–2):11–19

    Article  CAS  Google Scholar 

  • Prediger RD (2010) Effects of caffeine in Parkinson’s disease: from neuroprotection to the management of motor and non-motor symptoms. J Alzheimers Dis 20(Suppl 1):S205–S220

    PubMed  CAS  Google Scholar 

  • Qosa H, Abuznait AH, Hill RA, Kaddoumi A (2012) Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease. J Alzheimers Dis 31(1):151–165

    PubMed  CAS  Google Scholar 

  • Rafferty et al (2011) reported that olive leaf extract, glutamine, beta casein and chlorogenic acid significantly increased acute in-vitro glucagon-like peptide-1 (GLP-1) secretion (66–386%) in STC-1 cells. GLP-1 is an intestinal hormone with well-established glucose-lowering activity

    Google Scholar 

  • Rajavelu A, Tulyasheva Z, Jaiswal R, Jeltsch A, Kuhnert N (2011) The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols. BMC Biochem 12:16

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Sankar KU, Ravishankar GA (2012) Melatonin and serotonin profiles in beans of Coffea species. J Pineal Res 52(4):470–476

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Coronel M, Marnet N, Kolli VSK, Roussos S, Guyot S, Augur C (2004) Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (Coffea arabica) by thiolysis  −  high-performance liquid chromatography. J Agric Food Chem 52(5):1344–1349

    Article  PubMed  CAS  Google Scholar 

  • Ramlau-Hansen CH, Thulstrup AM, Bonde JP, Olsen J, Bech BH (2008) Semen quality according to prenatal coffee and present caffeine exposure: two decades of follow-up of a pregnancy cohort. Hum Reprod 23(12):2799–2805

    Article  PubMed  CAS  Google Scholar 

  • Ranheim T, Halvorsen B (2005) Coffee consumption and human health: beneficial or detrimental? Mechanisms for effects of coffee consumption on different risk factors for cardiovascular disease and type 2 diabetes mellitus. Mol Nutr Food Res 49:274–284

    Article  PubMed  CAS  Google Scholar 

  • Ratnayake WM, Hollywood R, O’Grady E, Stavric B (1993) Lipid content and composition of coffee brews prepared by different methods. Food Chem Toxicol 31:263–269

    Article  PubMed  CAS  Google Scholar 

  • Ratnayake WM, Pelletier G, Hollywood R, Malcolm S, Stavric B (1995) Investigation of the effect of coffee lipids on serum cholesterol in hamsters. Food Chem Toxicol 33(3):195–201

    Article  PubMed  CAS  Google Scholar 

  • Richelle M, Tavazzi I, Offord E (2001) Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa and tea) prepared per cup serving. J Agric Food Chem 49(7):3438–3442

    Article  PubMed  CAS  Google Scholar 

  • Rogers WJ, Michaux S, Bastin M, Bucheli P (1999) Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C. arabica) coffees. Plant Sci 149(2):115–123

    Article  CAS  Google Scholar 

  • Rosenberg L, Mitchell AA, Shapiro S, Slone D (1982) Selected birth defects in relation to caffeine-containing beverages. JAMA 247(10):1429–1432

    Article  PubMed  CAS  Google Scholar 

  • Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283(20):2674–2679

    Article  PubMed  CAS  Google Scholar 

  • Rubach M, Lang R, Skupin C, Hofmann T, Somoza V (2010) Activity-guided fractionation to characterize a coffee beverage that effectively down-regulates mechanisms of gastric acid secretion as compared to regular coffee. J Agric Food Chem 58(7):4153–4161

    Article  PubMed  CAS  Google Scholar 

  • Rubayiza AB, Meurens M (2005) Chemical discrimination of arabica and robusta coffees by Fourier transform Raman spectroscopy. J Agric Food Chem 53(12):4654–4659

    Article  PubMed  CAS  Google Scholar 

  • Rufián-Henares JA, de la Cueva SP (2009) Antimicrobial activity of coffee melanoidins-a study of their metal-chelating properties. J Agric Food Chem 57(2):432–438

    Article  PubMed  CAS  Google Scholar 

  • Rufián-Henares JA, Morales FJ (2007) Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins. J Agric Food Chem 55(4):1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Rufián-Henares JA, Morales FJ (2008) Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane-damage mechanism. J Agric Food Chem 56(7):2357–2362

    Article  CAS  Google Scholar 

  • Sacchetti G, Di Mattia C, Pittia P, Mastrocola D (2009) Effect of roasting degree, equivalent thermal effect and coffee type on the radical scavenging activity of coffee brews and their phenolic fraction. J Food Eng 90(1):74–80

    Article  Google Scholar 

  • Salazar-Martinez E, Willett WC, Ascherio A, Manson JE, Leitzmann MF, Stampfer MJ, Hu FB (2004) Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med 140:1–8

    PubMed  Google Scholar 

  • Sánchez-González I, Jiménez-Escrig A, Saura-Calixto F (2005) In vitro antioxidant activity of coffees brewed using different procedures (Italian, espresso and filter). J Agric Food Chem 53(1–2):133–139

    Google Scholar 

  • Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, Cao C, Arendash GW (2009) Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience 163(1):55–72

    Article  PubMed  CAS  Google Scholar 

  • Santos MHD, Batista BL, Duarte SMD, Abreu CMP, Gouvêa CMCP (2007) Influência do processamento e da torrefação sobre a atividade antioxidante do café (Coffea arabica) [Influence of processing and roasting on the antioxidant activity of cofee (Coffea arabica)]. Quím Nova 30(3):604–610

    Article  Google Scholar 

  • Sanz C, Ansorena D, Bello J, Cid C (2001) Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee. J Agric Food Chem 49(3):1364–1369

    Article  PubMed  CAS  Google Scholar 

  • Sanz C, Czerny M, Cid C, Schieberle P (2002) Comparison of potent odorants in a filtered coffee brew and in an instant coffee beverage by aroma extract dilution analysis (AEDA). Eur Food Res Technol 214(4):299–302

    Article  CAS  Google Scholar 

  • Scheidig C, Czerny M, Schieberle P (2007) Changes in key odorants of raw coffee beans during storage under defined conditions. J Agric Food Chem 55(14):5768–5775

    Article  PubMed  CAS  Google Scholar 

  • Schilter B, Perrin I, Cavin C, Huggett AC (1996) Placental glutathione S-transferase (GST-P) induction as a potential mechanism for the anti-carcinogenic effect of the coffee-specific components cafestol and kahweol. Carcinogenesis 17(11):2377–2384

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RJ, Romitti PA, Burns TL, Browne ML, Druschel CM, Olney RS, National Birth Defects Prevention Study (2009) Maternal caffeine consumption and risk of neural tube defects. Birth Defects Res A Clin Mol Teratol 85(11):879–889

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RJ, Romitti PA, Burns TL, Murray JC, Browne ML, Druschel CM, Olney RS, National Birth Defects Prevention Study (2010) Caffeine, selected metabolic gene variants, and risk for neural tube defects. Birth Defects Res A Clin Mol Teratol 88(7):560–569

    Article  PubMed  CAS  Google Scholar 

  • Semmelroch P, Grosch W (1996) Studies on character impact odorants of coffee brews. J Agric Food Chem 44(2):537–543

    Article  CAS  Google Scholar 

  • Shimoda H, Seki E, Aitani M (2006) Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement Altern Med 6: Article 9

    Google Scholar 

  • Singh S, Singh K, Gupta SP, Patel DK, Singh VK, Singh RK, Singh MP (2009) Effect of caffeine on the expression of cytochrome P450 1A2, adenosine A2A receptor and dopamine transporter in control and 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine treated mouse striatum. Brain Res 1283:115–126

    Article  PubMed  CAS  Google Scholar 

  • Smith RF (1985) History of coffee. In: Clifford MN, Willson KC (eds) Coffee: botany, biochemistry, and production of beans and beverage. The AVI Publishing Company, Inc., Westport, pp 1–12

    Google Scholar 

  • Smith A (2002) Effects of caffeine on human behavior. Food Chem Toxicol 40(9):1243–1255

    Article  PubMed  CAS  Google Scholar 

  • Somoza V, Lindenmeier M, Wenzel E, Frank O, Erbersdobler HF, Hofmann T (2003) Activity-guided identification of a chemopreventive compound in coffee beverage using in vitro and in vivo techniques. J Agric Food Chem 51(23):6861–6869

    Article  PubMed  CAS  Google Scholar 

  • Somporn C, Kamtuo A, Theerakulpisut P, Siriamornpun S (2011) Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor). Int J Food Sci Technol 46:2287–2296

    Article  CAS  Google Scholar 

  • Somporn C, Kamtuo A, Theerakulpisut P, Siriamornpun S (2012) Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea arabica L. cv. Catimor) harvested from north-eastern Thailand. J Sci Food Agric 92(9):1956–1963. doi:10.1002/jsfa.5568

    Article  PubMed  CAS  Google Scholar 

  • Sonsalla PK, Wong LY, Harris SL, Richardson JR, Khobahy I, Li W, Gadad BS, German DC (2012) Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson’s disease. Exp Neurol 234(2):482–487

    Article  PubMed  CAS  Google Scholar 

  • Stalmach A, Mullen W, Barron D, Uchida K, Yokota T, Cavin C, Steiling H, Williamson G, Crozier A (2009) Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption. Drug Metab Dispos 37(8):1749–1758

    Article  PubMed  CAS  Google Scholar 

  • Stalmach A, Steiling H, Williamson G, Crozier A (2010) Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy. Arch Biochem Biophys 501(1):98–105

    Article  PubMed  CAS  Google Scholar 

  • Stauder M, Papetti A, Mascherpa D, Schito AM, Gazzani G, Pruzzo C, Daglia M (2010) Antiadhesion and antibiofilm activities of high molecular weight coffee components against Streptococcus mutans. J Agric Food Chem 58(22):11662–11666

    Article  PubMed  CAS  Google Scholar 

  • Tagliazucchi D, Verzelloni E, Conte A (2010) Effect of dietary melanoidins on lipid peroxidation during simulated gastric digestion: their possible role in the prevention of oxidative damage. J Agric Food Chem 58(4):2513–2519

    Article  PubMed  CAS  Google Scholar 

  • Tan EK, Tan C, Fook-Chong SM, Lum SY, Chai A, Chung H, Shen H, Zhao Y, Teoh ML, Yih Y, Pavanni R, Chandran VR, Wong MC (2003) Dose-dependent ­protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci 216(1):163–167

    Article  PubMed  Google Scholar 

  • Tan EK, Chua E, Fook-Chong SM, Teo YY, Yuen Y, Tan L, Zhao Y (2007) Association between caffeine intake and risk of Parkinson’s disease among fast and slow metabolizers. Pharmacogenet Genomics 17(11):1001–1005

    Article  PubMed  CAS  Google Scholar 

  • Tao KS, Wang W, Wang L, Cao DY, Li YQ, Wu SX, Dou KF (2008) The multifaceted mechanisms for coffee’s anti-tumorigenic effect on liver. Med Hypotheses 71(5):730–736

    Article  PubMed  CAS  Google Scholar 

  • Thaler H (1979) The chemistry of coffee extraction in relation to polysaccharides. Food Chem 4(1):13–22

    Article  CAS  Google Scholar 

  • Townsend MK, Resnick NM, Grodstein F (2012) Caffeine intake and risk of urinary incontinence progression among women. Obstet Gynecol 119(5):950–957

    Article  PubMed  CAS  Google Scholar 

  • Trinh K, Andrews L, Krause J, Hanak T, Lee D, Gelb M, Pallanck L (2010) Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson’s disease through an NRF2-dependent mechanism. J Neurosci 30(16):5525–5532

    Article  PubMed  CAS  Google Scholar 

  • Trovato GM, Pirri C, Martines GF, Trovato F, Catalano D (2010) Coffee, nutritional status, and renal artery resistive index. Ren Fail 32(10):1137–1147

    Article  PubMed  Google Scholar 

  • Trugo LC, Macrae R (1984) Chlorogenic acid composition of Instant coffees. Analyst 109:263–266

    Article  PubMed  CAS  Google Scholar 

  • Tsuda S, Egawa T, Ma X, Oshima R, Kurogi E, Hayashi T (2012) Coffee polyphenol caffeic acid but not chlorogenic acid increases 5′AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. J Nutr Biochem 23(11):1403–1409

    Google Scholar 

  • Tsujimoto K, Sakuma C, Uozaki M, Yamasaki H, Utsunomiya H, Oka K, Koyama AH (2010) Antiviral effect of pyridinium formate, a novel component of coffee extracts. Int J Mol Med 25(3):459–463

    PubMed  CAS  Google Scholar 

  • Tunnicliffe JM, Eller LK, Reimer RA, Hittel DS, Shearer J (2011) Chlorogenic acid differentially affects postprandial glucose and glucose-dependent insulinotropic polypeptide response in rats. Appl Physiol Nutr Metab 36(5):650–659

    Article  PubMed  Google Scholar 

  • Ulloa Rojas JB, Verreth JAJ, van Weerd JH, Huisman EA (2002) Effect of different chemical treatments on nutritional and antinutritional properties of coffee pulp. Anim Feed Sci Technol 99:195–204

    Article  CAS  Google Scholar 

  • Ulloa Rojas JB, Verreth JAJ, Amato S, Huisman EA (2003) Biological treatments affect the chemical composition of coffee pulp. Bioresour Technol 89:267–274

    Article  PubMed  CAS  Google Scholar 

  • Um HJ, Oh JH, Kim YN, Choi YH, Kim SH, Park JW, Kwon TK (2010) The coffee diterpene kahweol sensitizes TRAIL-induced apoptosis in renal carcinoma Caki cells through down-regulation of Bcl-2 and c-FLIP. Chem Biol Interact 186(1):36–42

    Article  PubMed  CAS  Google Scholar 

  • Urgert R, Katan MB (1996) The cholesterol-raising factor from coffee beans. J R Soc Med 89(11):618–623

    PubMed  CAS  Google Scholar 

  • Urgert R, Schulz AG, Katan MB (1995a) Effects of cafestol and kahweol from coffee grounds on serum lipids and serum liver enzymes in humans. Am J Clin Nutr 61(1):149–154

    PubMed  CAS  Google Scholar 

  • Urgert R, Van der Weg G, Kosmeijer-Schuil TG, Van de Bovenkamp P, Hovenier R, Katan MB (1995b) Levels of the cholesterol elevating diterpenes cafestol and kahweol in various coffee brews. J Agric Food Chem 43:2167–2172

    Article  CAS  Google Scholar 

  • Urgert R, Essed N, van der Weg G, Kosmeijer-Schuil TG, Katan MB (1997) Separate effects of the coffee diterpenes cafestol and kahweol on serum lipids and liver aminotransferases. Am J Clin Nutr 65(2):519–524

    PubMed  CAS  Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (USDA) (2012) USDA National nutrient database for standard reference, Release 25. Nutrient Data Laboratory Home Page, http://www.ars.usda.gov/ba/bhnrc/ndl

  • Utsunomiya H, Ichinose M, Uozaki M, Tsujimoto K, Yamasaki H, Koyama AH (2008) Antiviral activities of coffee extracts in vitro. Food Chem Toxicol 46(6):1919–1924

    Article  PubMed  CAS  Google Scholar 

  • Vaast P, Bertrand B, Perriot JJ, Guyot B, Genard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Agric Food Chem 86:197–204

    Article  CAS  Google Scholar 

  • van Dam RM (2006) Coffee consumption and the decreased risk of diabetes mellitus type 2. Ned Tijdschr Geneeskd 150(33):1821–1825 (In Dutch)

    PubMed  Google Scholar 

  • van Dam RM, Dekker JM, Nijpels G, Stehouwer CD, Bouter LM, Heine RJ, Hoorn study (2004) Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn study. Diabetologia 47(12):2152–2159

    Article  PubMed  CAS  Google Scholar 

  • Van der Vossen HAM, Soenaryo A, Mawardi S (2000) Coffea L. In: van der Vossen HAM, Wessel M (eds) Plant resources of South-East Asia No 16 stimulants. Backhuys, Leiden, pp 66–74

    Google Scholar 

  • van Dijk AE, Olthof MR, Meeuse JC, Seebus E, Heine RJ, van Dam RM (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32(6):1023–1025

    Article  PubMed  CAS  Google Scholar 

  • van Dusseldorp M, Katan MB, van Vliet T, Demacker PN, Stalenhoef AF (1991) Cholesterol-raising factor from boiled coffee does not pass a paper filter. Arterioscler Thromb 11(3):586–593

    Google Scholar 

  • Vignoli JA, Bassoli DG, Benassi MT (2011) Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: the influence of processing conditions and raw material. Food Chem 124(3):863–868

    Article  CAS  Google Scholar 

  • Vinson JA, Burnham BR, Nagendran MV (2012) Randomized, double-blind, placebo-controlled, linear dose, crossover study to evaluate the efficacy and safety of a green coffee bean extract in overweight subjects. Diabetes Metab Syndr Obes 5:21–27

    Article  PubMed  CAS  Google Scholar 

  • Vitaglione P, Morisco F, Mazzone G, Amoruso DC, Ribecco MT, Romano A, Fogliano V, Caporaso N, D’Argenio G (2010) Coffee reduces liver damage in a rat model of steatohepatitis: the underlying mechanisms and the role of polyphenols and melanoidins. Hepatology 52(5):1652–1661

    Article  PubMed  CAS  Google Scholar 

  • Vitzthum OG, Werkhoff P (1976) Steam volatile aroma constituents of roasted coffee: neutral fraction. Z Lebensm Unters Forsch 160(3):277–291

    Article  PubMed  CAS  Google Scholar 

  • Walker J, Rohm B, Lang R, Pariza MW, Hofmann T, Somoza V (2012) Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12). Food Chem Toxicol 50(2):390–398

    Article  PubMed  CAS  Google Scholar 

  • Wang GF, Shi LP, Ren YD, Liu QF, Liu HF, Zhang RJ, Li Z, Zhu FH, He PL, Tang W, Tao PZ, Li C, Zhao WM, Zuo JP (2009) Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res 83(2):186–190

    Article  PubMed  CAS  Google Scholar 

  • Weckerle B, Gáti T, Tóth G, Schreier P (2002) 3-Methylbutanoyl and 3-methylbut-2-enoyl disaccharides from green coffee beans (Coffea arabica). Phytochemistry 60(4):409–414

    Article  PubMed  CAS  Google Scholar 

  • Weiss C, Rubach M, Lang R, Seebach E, Blumberg S, Frank O, Hofmann T, Somoza V (2010) Measurement of the intracellular pH in human stomach cells: a novel approach to evaluate the gastric acid secretory potential of coffee beverages. J Agric Food Chem 58(3):1976–1985

    Article  PubMed  CAS  Google Scholar 

  • Wen X, Enokizo A, Hattori H, Kobayashi S, Murata M, Homma S (2005) Effect of roasting on properties of the zinc-chelating substance in coffee brews. J Agric Food Chem 53(7):2684–2689

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek J, Mozolewski W, Smoczyńska K, Wieczorek Z (2002) The occurrence of polycyclic aromatic hydrocarbons (PAHs) in infusion of natural coffee, coffee substitute and cocoa. Rocz Panstw Zakl Hig 53(3):231–236 (In Polish)

    PubMed  CAS  Google Scholar 

  • Wilson KM, Kasperzyk JL, Rider JR, Kenfield S, Van Dam RM, Stampfer MJ, Giovannucci E, Mucci LA (2011) Coffee consumption and prostate cancer risk and progression in the health professionals follow-up study. J Natl Cancer Inst 103(11):876–884

    Article  PubMed  CAS  Google Scholar 

  • Winston AP, Hardwick E, Jaberi N (2005) Neuropsychiatric effects of caffeine. Adv Psychiatr Treat 11:432–439

    Article  Google Scholar 

  • Woolcott CG, King WD, Marrett LD (2002) Coffee and tea consumption and cancers of the bladder, colon and rectum. Eur J Cancer Prev 11(2):137–145

    Article  PubMed  CAS  Google Scholar 

  • Wrigley G (1988) Coffee. Longman Scientific Technical/Wiley, New York, 639 pp

    Google Scholar 

  • Wu X, Skog K, Jägerstad M (1997) Trigonelline, a naturally occurring constituent of green coffee beans behind the mutagenic activity of roasted coffee? Mutat Res 391(3):171–177

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Willett WC, Hankinson SE, Giovannucci E (2005) Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in U.S. women. Diabetes Care 28(6):1390–1396

    Article  PubMed  CAS  Google Scholar 

  • Wu JN, Ho SC, Zhou C, Ling WH, Chen WQ, Wang CL, Chen YM (2009) Coffee consumption and risk of coronary heart diseases: a meta-analysis of 21 prospective cohort studies. Int J Cardiol 137(3):216–225

    Article  PubMed  Google Scholar 

  • Xu K, Xu YH, Chen JF, Schwarzschild MA (2010) Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson’s disease. Neuroscience 167(2):475–481

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi R, Kobayashi M, Matsuda Y, Ojika M, Shigeoka S, Yamamoto Y, Tou Y, Inoue T, Katagiri T, Murai A, Horio F (2010) Coffee and caffeine ameliorate ­hyperglycemia, fatty liver, and inflammatory adipocytokine expression in spontaneously diabetic KK-Ay mice. J Agric Food Chem 58(9):5597–5603

    Article  PubMed  CAS  Google Scholar 

  • Yanagimoto K, Lee KG, Ochi H, Shibamoto T (2002) Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by Maillard reaction. J Agric Food Chem 50(19):5480–5484

    Article  PubMed  CAS  Google Scholar 

  • Yanagimoto K, Ochi H, Lee KG, Shibamoto T (2004) Antioxidative activities of fractions obtained from brewed coffee. J Agric Food Chem 52(3):592–596

    Article  PubMed  CAS  Google Scholar 

  • Yen WJ, Wang BS, Chang LW, Duh PD (2005) Antioxidant properties of roasted coffee residues. J Agric Food Chem 53(7):2658–2663

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Bao Z, Zou J, Dong J (2011) Coffee consumption and risk of cancers: a meta-analysis of cohort studies. BMC Cancer 11:96

    Article  PubMed  Google Scholar 

  • Zivković R (2000) Coffee and health in the elderly. Acta Med Croatica 54(1):33–36

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lim, T.K. (2013). Coffea arabica . In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5653-3_32

Download citation

Publish with us

Policies and ethics