Skip to main content

Ophthalmology of Passeriformes

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology

Abstract

Passerines comprise over 50% of the known avian species on Earth, with over 6000 species in greater than 110 families distributed worldwide except for Antarctica (Barker et al. 2004). Classified as the “perching birds,” Passeriformes are able to perch on vertical surfaces (i.e., trees) owed to having an anisodactyl toe arrangement, that is, having three toes directed forward and a fourth directed backward. They are generally small but range from only a few grams (short-tailed pygmy tyrant Myiornis ecaudatus) to nearly 1.5 kg (Raven, Corvus corax). Most species are omnivores, with their diets varying seasonally (i.e., increasing insect consumption during the breeding season), although there are some primarily carnivorous species (e.g., shrikes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams GA, Paul-Murphy J, Murphy CJ (2002) Conjunctivitis in birds. Vet Clin North Am Exot Anim Pract 5:287–309

    PubMed  Google Scholar 

  • Adelman JS, Kirkpatrick L, Grodio JL et al (2013) House finch populations differ in early inflammatory signaling and pathogen tolerance at the peak of Mycoplasma gallisepticum infection. Am Nat 181:674–689

    PubMed  Google Scholar 

  • Allen CR, Mara A, Tulman ER et al (2018) House finch (Haemorhous mexicanus)-associated Mycoplasma gallisepticum identified in Lesser goldfinch (Spinus psaltria) and Western scrub jay (Aphelocoma californica) using strain-specific quantitative PCR. J Wildl Dis 54:180–185

    CAS  PubMed  Google Scholar 

  • Barker FK, Cibois A, Schikler P et al (2004) Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci 101:11040–11045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumhardt PE, Moore BA, Doppler M et al (2014) Do American goldfinches see their world like passive prey foragers? A study on visual fields, retinal topography, and sensitivity of photoreceptors. Brain Behav Evol 83:181–198

    PubMed  Google Scholar 

  • Bayón A, Almela RM, Talavera J (2007) Avian ophthalmology. Eur J Comp Anim Pract 17:253–266

    Google Scholar 

  • Bigland CH, Whenham GR, Graesser FE (1962) A pox like infection of canaries: report of an outbreak. Can Vet J 3:347–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blackwell BF, Fernandez-Juricic E, Seamans TW et al (2009) Avian visual system configuration and behavioural response to object approach. Anim Behav 77:673–684

    Google Scholar 

  • Bolte AL, Meurer J, Kaleta EF (1999) Avian host spectrum of avipoxviruses. Avian Pathol 28:415–432

    CAS  PubMed  Google Scholar 

  • Burnet FM, Bernard JE (1933) A virus disease of the canary of the fowl pox group. J Pathol Bacteriol 37:107–122

    Google Scholar 

  • Cavill JP (1964) Canary pox: report of an outbreak in roller canaries (Serinus canarius). Vet Rec 76:463–465

    Google Scholar 

  • Cherry JJ, Ley DH, Altizer S (2006) Genotypic analyses of Mycoplasma gallisepticum isolates from songbirds by random amplification of polymorphic DNA and amplified-fragment length polymorphism. J Wildl Dis 42:421–428

    CAS  PubMed  Google Scholar 

  • Chievitz J (1891) Über das Vorkommen der Area centralis retinae in den vier höheren Wirbelthierklassen. Archiv für Anatomische Entwicklung 1:334

    Google Scholar 

  • Chung YS, Spradbow PB (1977) Studies on poxvirus isolated from a magpie in Queensland. Austral Vet J 53:334–336

    CAS  PubMed  Google Scholar 

  • Coimbra JP, Marceliano MLV, da Silveira Andrade-da-Costa BL et al (2006) The retina of tyrant flycatchers: topographic organization of neuronal density and size in the ganglion cell layer of the great kiskadee Pitangus sulphuratus and the rusty margined flycatcher Myiozetetes cayanensis (Aves: Tyrannidae). Brain Behav Evol 68:15–25

    PubMed  Google Scholar 

  • Coimbra JP, Trévia N, Marceliano MLV et al (2009) Number and distribution of neurons in the retinal ganglion cell layer in relation to foraging behaviors of tyrant flycatchers. J Comp Neurol 514:66–73

    PubMed  Google Scholar 

  • Coimbra JP, Collin SP, Hart NS (2014) Topographic specializations in the retinal ganglion cell layer of Australian Passerines. J Comp Neurol 522:3609–3628

    CAS  PubMed  Google Scholar 

  • Coimbra JP, Collin SP, Hart NS (2015) Variations in retinal photoreceptor topography and the organization of the rod-free zone reflect behavioral diversity in Australian Passerines. J Comp Neurol 523:1073–1094

    PubMed  Google Scholar 

  • Craig AJFK, Hulley PE (2004) Iris colour in passerine birds: why be bright-eyed? S Afr J Sci 100:584–588

    Google Scholar 

  • Davidson GL, Clayton NS, Thornton A (2014) Salient eyes deter conspecific nest intruders in wild jackdaws (Corvus monedula). Biol Lett 10:20131077

    PubMed  PubMed Central  Google Scholar 

  • Davidson GL, Thornton A, Clayton NS (2016) Evolution of iris color in relation to cavity nesting and parental care in passerine birds. Biol Lett 13:e20160783

    Google Scholar 

  • de Jong DA (1912) Epithelioma contagiosum bij Pyrrhula vulgaris. Tijdskrift Veartsenigk 39:734–736

    Google Scholar 

  • Desmidt M, Duscatell R, Uyttebroek E et al (1989) Cytomegalovirus-like conjunctivitis in Australian finches. J Assoc Avian Vet 5:132–136

    Google Scholar 

  • Dhondt KV, Dhondt AA, Ley DH (2007) Effects of route of inoculation of Mycoplasma gallisepticum infection in captive house finches. Avian Pathol 36:475–479

    PubMed  Google Scholar 

  • Dhondt AA, Dhondt KV, McCleery BV (2008) Comparative infectiousness of three passerine bird species after experimental inoculation with Mycoplasma gallisepticum. Avian Pathol 37:635–640

    PubMed  Google Scholar 

  • Dhondt AA, DeCoste JC, Ley DH et al (2014) Diverse wild bird host range of Mycoplasma gallisepticum in eastern North America. PLoS One 9:e103553

    PubMed  PubMed Central  Google Scholar 

  • Dhondt AA, Dhondt KV, Hochachka WM (2015) Response of black-capped chickadees to house finch Mycoplasma gallisepticum. PLoS One 10:e0124820

    PubMed  PubMed Central  Google Scholar 

  • Dhondt AA, Dhondt KV, Nazeri S (2017) Apparent effect of chronic Plasmodium infections on disease severity caused by experimental infections with Mycoplasma gallisepticum in house finches. Int J Parasitol Parasites Wildl 6:49–53

    PubMed  PubMed Central  Google Scholar 

  • Docherty DE, Long RIR (1986) Isolation of a poxvirus from a house finch Carpodacus mexicanus (Muller). J Wildl Dis 22:420–422

    CAS  PubMed  Google Scholar 

  • Docherty DE, Long RI, Flickinger EL et al (1991) Isolation of poxvirus from debilitating cutaneous lesions on four immature grackles (Quiscalus sp). Avian Dis 35:244–247

    CAS  PubMed  Google Scholar 

  • Dolan T, Fernandez-Juricic E (2010) Retinal ganglion cell topography of five species of ground-foraging birds. Brain Behav Evol 75:111–121

    PubMed  PubMed Central  Google Scholar 

  • Doneley B (2016) Disorders of the eye. In: Doneley B (ed) Avian medicine and surgery in practice: companion and aviary birds, 2nd edn. CRC Press, Boca Raton (FL), pp 197–203

    Google Scholar 

  • Donnely TM, Crane LA (1984) An epornitic of avian pox in a research aviary. Avian Dis 28:517–525

    Google Scholar 

  • Dorrestein GM (2009) Passerines. In: Handbook of avian medicine, pp 169–208

    Google Scholar 

  • Dubey JP (2002) A review of toxoplasmosis in wild birds. Vet Parasitol 106(2):121–153

    CAS  PubMed  Google Scholar 

  • Ensley PK, Anderson MP, Costello ML et al (1978) Epornitic of avian pox in a zoo. J Am Vet Med Assoc 173:1111–1114

    CAS  PubMed  Google Scholar 

  • Ensminger AL, Fernandez-Juricic E (2014) Individual variation in cone photoreceptor density in house sparrows: implications for between-individual differences in visual resolution and chromatic contrast. PLoS One 9:e111854

    PubMed  PubMed Central  Google Scholar 

  • Farmer KL, Hill GE, Roberts SR (2005) Susceptibility of wild songbirds to the house finch strain of Mycoplasma gallisepticum. J Wildl Dis 41:317–325

    CAS  PubMed  Google Scholar 

  • Fernandez-Juricic E, Gall MD, Dolan T et al (2008) The visual fields of two ground-foraging birds, house finches and house sparrows, allow for simultaneous foraging and anti-predator vigilance. Ibis 150:779–787

    Google Scholar 

  • Fernandez-Juricic E, O’Rourke C, Pitlik T (2010) Visual coverage and scanning behavior in two corvid species: American crow and Western scrub jay. J Comp Physiol A 196:879–888

    Google Scholar 

  • Fischer JR, Stallknecht DE, Luttrell P et al (1997) Mycoplasmal conjunctivitis in wild songbirds: the spread of a new contagious disease in a mobile host population. Emerg Infect Dis 3:69–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsyth MH, Tully JG, Gorton TS et al (1996) Mycoplasma sturni sp. nov., from the conjunctiva of a European starling (Sturnus vulgaris). Int J Syst Evol Microbiol 46:716–719

    CAS  Google Scholar 

  • Fox R, Lehmkuhle SW, Westendorf DH (1976) Falcon visual acuity. Science 192:263–265

    CAS  PubMed  Google Scholar 

  • Frasca S Jr, Hinckley L, Forsyth MH et al (1997) Mycoplasmal conjunctivitis in a European starling. J Wildl Dis 33:336–339

    PubMed  Google Scholar 

  • Gaffney MF, Hodos W (2003) The visual acuity and refractive state of the American kestrel (Falco sparverius). Vis Res 43:2052–2059

    Google Scholar 

  • Galvan I, Erritzoe J, Wakamatsu K et al (2012) High prevalence of cataracts in birds with pheomelanin-based colouration. Comp Biochem Physiol 162:259–264

    CAS  Google Scholar 

  • Gerlach H (1994) Viruses. In: Ritchie BW (ed) Avian medicine: principles and application. Wingers Publishing, Lake Worth, FL, pp 862–948

    Google Scholar 

  • Gibbens JC, Abraham EJ, MacKenzie G (1997) Toxoplasmosis in canaries in Great Britain. Vet Rec 140:370–371

    CAS  PubMed  Google Scholar 

  • Giddens WE Jr, Swango LJ, Henderson JD Jr et al (1971) Canary pox in sparrows and canaries (Fringillidae) and in weavers (Ploceidae). Vet Pathol 8:260–280

    PubMed  Google Scholar 

  • Greve JH (ed) (1986) Parasitic diseases. W.B. Saunders, Philadelphia

    Google Scholar 

  • Hartup BK, Kollias GV (1999) Field investigation of mycoplasma gallisepticum infections in house finch (Carpodacus mexicanus) eggs and nestlings. Avian Dis 43:572–576

    CAS  PubMed  Google Scholar 

  • Hartup BK, Kollias GV (2000) Mycoplasmal conjunctivitis in wild house finches. Compendium 22:1001–1004

    Google Scholar 

  • Hartup BK, Mohammed HO, Kollias GV et al (1998) Risk factors associated with mycoplasmal conjunctivitis in house finches. J Wildl Dis 34:281–288

    CAS  PubMed  Google Scholar 

  • Hartup BK, Kollias GV, Ley DH (2000) Mycoplasmal conjunctivitis in songbirds from New York. J Wildl Dis 36:257–264

    CAS  PubMed  Google Scholar 

  • Hartup BK, Dhondt AA, Sydenstricker KV, Hochachka WM, Kollias GV (2001) Host range and dynamics of mycoplasmal conjunctivitis among birds in North America. J Wildl Dis 37:72–81

    CAS  PubMed  Google Scholar 

  • Hawley DM, Grodio J, Frasca S Jr et al (2011) Experimental infection of domestic canaries (Serinus canaria domestica) with Mycoplasma gallisepticum: a new model system for a wildlife disease. Avian Pathol 40:321–327

    PubMed  Google Scholar 

  • Herbst W, Krauss H (1989) Isolation of a poxvirus from a sparrow (Passer domesticus). J Veterinary Med Ser B 36:477–479

    CAS  Google Scholar 

  • Holt G, Krogsrud J (1973) Pox in wild birds. Acta Vet Scand 14:201–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hukkanen RR, Richardson M, Wingfield JC et al (2003) Avipox sp. in a colony of Gray-Crowned Rosy Finches (Leucosticte tephrocotis). Comp Med 53:548–552

    CAS  PubMed  Google Scholar 

  • Hunter WS, Quay TL (1953) An ecological study of the helminth fauna of Macgillivray’s seaside sparrow, Ammospiza maritime macgillivraii (Audubon). Am Midl Nat 50:407–413

    Google Scholar 

  • Inzunza O, Bravo H, Smith RL et al (1991) Topography and morphology of retinal ganglion cells in falconiforms – A study on predatory and carrion-eating birds. Anat Rec 229:271–277

    CAS  PubMed  Google Scholar 

  • Johnson BJ, Castro AE (1986) Canary pox causing high mortality in an aviary. J Am Vet Med Assoc 189:1345–1347

    CAS  PubMed  Google Scholar 

  • Jones A, Kirchgessner M, Mitchell MA et al (2007) Diagnostic challenge. J Exotic Pet Med 16:122–125

    Google Scholar 

  • Kaleta EF, Hönicke A (2005) A retrospective description of a highly pathogenic avian influenza a virus (H7N1/carduelis/Germany/ 72) in a free-living siskin (Carduelis spinus Linnaeus, 1758) and its accidental transmission to yellow canaries (Serinus canaria Linnaeus, 1758). Dtsch Tierarztl Wochenschr 112:17–19

    CAS  PubMed  Google Scholar 

  • Kaleta EF, Marschall H-J (1982) Pocken beim Kapuzenzeisig (Carduelis cucullata). J Veterinary Med Ser B 29:776–781

    CAS  Google Scholar 

  • Karpinski LG, Clubb SL (1985) Postpox ocular problems in Blue-Fronted Amazons and Blue-headed Pionus Parrots. Proc Assoc of Avian Vet:92–100

    Google Scholar 

  • Karpinski LG, Clubb SL (1986a) Clinical aspects of ophthalmology in caged birds. In: Kirk RW (ed) Current veterinary therapy IX. W.B. Saunders, Philadelphia, pp 616–621

    Google Scholar 

  • Karpinski LG, Clubb SL (1986b) An outbreak of pox in imported mynahs. Annual Meeting of the Association of Avian Veterinarians, Miami, 35–37.

    Google Scholar 

  • Karstad L (1971) Pox. Iowa State University Press, Ames, IA

    Google Scholar 

  • Keller CB (1992) Bilateral extraction of cataracts in a crow. Can Vet J 33:273–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kern TJ (ed) (1997) Disorders of the special senses. W.B. Saunders, Philadelphia

    Google Scholar 

  • Kern TJ, Colitz CMH (2013) Exotic animal ophthalmology. In: Gelatt KN, Gilger BC, Kern TJ (eds) Veterinary ophthalmology. John Wiley & Sons, Inc., Ames, Iowa, pp 1750–1819

    Google Scholar 

  • Keymer IF (1977) Cataracts in birds. Avian Pathol 6:335–341

    CAS  PubMed  Google Scholar 

  • Klem D Jr (2009) Preventing bird–window collisions. Wilson J Ornithol 121:314–321

    Google Scholar 

  • Korbel RT (1997) Avian ophthalmology-principles and application. Proc Assoc of Avian Vet:305–315

    Google Scholar 

  • Koschmann JR (1986) Vitamin A deficiency in caged birds. Texas Vet Med J (September–October):25–27

    Google Scholar 

  • Landolt M, Kocan RM (1976) Transmission of avian pox from starlings to Rothchild’s Mynahs. J Wildl Dis 12:353–356

    CAS  PubMed  Google Scholar 

  • Ley DH, Yoder HWJ (1997) Mycoplasma gallisepticum infection. In: Calnek BW, Barnes HJ, Beard CW, McDougald LR, Saif YM (eds) Diseases of poultry, 10th edn. Iowa State University Press, Ames, IA, pp 194–207

    Google Scholar 

  • Ley DH, Berkhoff JE, McLaren JM (1996) Mycoplasma gallisepticum isolated from House Finches (Carpodacus mexicanus) with conjunctivitis. Avian Dis 40:480–483

    CAS  PubMed  Google Scholar 

  • Ley DH, Geary SH, Bekhoff JE et al (1998) Mycoplasma sturni from blue jays and northern mockingbirds with conjunctivitis in Florida. J Wildl Dis 34:403–406

    CAS  PubMed  Google Scholar 

  • Ley DH, Sheaffer DS, Dhondt AA (2006) Further western spread of Mycoplasma gallisepticum infection of House Finches. J Wildl Dis 42:429–431

    PubMed  Google Scholar 

  • Ley DH, Anderson N, Dhondt KV et al (2010) Mycoplasma sturni from a California house finch with conjunctivitis did not cause disease in experimentally infected house finches. J Wildl Dis 46:994–999

    PubMed  Google Scholar 

  • Ley DH, Hawley DM, Geary SJ et al (2016) House Finch (Haemorhous mexicanus) conjunctivitis, and Mycoplasma spp. isolated from North American wild birds, 1994–2015. J Wildl Dis 52:669–673

    PubMed  PubMed Central  Google Scholar 

  • Lindsay DS, Gasser RB, Harrigan KE et al (1995) Central nervous system toxoplasmosis in roller canaries. Avian Dis 39:204–207

    CAS  PubMed  Google Scholar 

  • Literák I, Sedlák K, Juricová Z et al (1999) Experimental toxoplasmosis in house sparrows (Passer domesticus). Avian Pathol 28:363–368

    PubMed  Google Scholar 

  • Literak I, Heneberg P, Sitko J et al (2013) Eye trematode infection in small passerines in Peru caused by Philophthalmus lucipetus, an agent with a zoonotic potential spread by an invasive freshwater snail. Parasitol Int 62:390–396

    PubMed  Google Scholar 

  • Luttrell MP, Stallknecht DE, Kleven SH et al (2001) Mycoplasma gallisepticum in house finches (Carpodacus mexicanus) and other wild birds associated with poultry production facilities. Avian Dis 45:321–329

    CAS  PubMed  Google Scholar 

  • Macwhirter P (1994) Passeriformes. In: Ritchie B, Harrison G, Harrison L (eds) Avian medicine: principles and application. Wingers, Lake Worth, FL, pp 1172–1199

    Google Scholar 

  • Martin GR (1986) The eye of a passeriform bird, the European starling (Sturnus vulgaris): eye movement amplitude, visual fields and schematic optics. J Comp Physiol A 159:545–557

    Google Scholar 

  • Mashima TY, Ley DH, Stoskopf MK et al (1997) Evaluation of treatment of conjunctivitis associated with Mycoplasma gallisepticum in house finches (Carpodacus mexicanus). J Avian Med Surg 1:20–24

    Google Scholar 

  • Massey JG (2003) Diseases and medical management of wild Passeriformes. Semin Avian Exot Pet Med 12:29–36

    Google Scholar 

  • Mikaelian I, Ley DH, Claveau R et al (2001) Mycoplasmosis in evening and pine grosbeaks with conjunctivitis in Quebec. J Wildl Dis 37:826–830

    CAS  PubMed  Google Scholar 

  • Moore BA, Doppler M, Young JE et al (2013) Interspecific differences in the visual system and scanning behavior of three forest passerines that form heterospecific flocks. J Comp Physiol A 199:263–277

    Google Scholar 

  • Moore BA, Pita D, Tyrrell LP et al (2015) Vision in avian emberizid foragers: maximizing both binocular vision and fronto-lateral visual acuity. J Exp Biol 218:1347–1358

    PubMed  Google Scholar 

  • Moore BA, Tyrrell LP, Pita D et al (2017a) Does retinal configuration make the head and eye of foveate birds move? Sci Rep 7:38406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore BA, Teixeira LBC, Sponsel WE et al (2017b) The consequences of avian ocular trauma: histopathological evidence and implications of acute and chronic disease. Vet Ophthalmol 20:496–504

    PubMed  Google Scholar 

  • Moroney MK, Pettigrew JD (1987) Some observations on the visual optics of kingfishers (Aves, Coraciformes, Alcedinidae). J Comp Physiol A 160:137–149

    Google Scholar 

  • Mousseau TA, Moller AP (2013) Elevated frequency of cataracts in birds from Chernobyl. PLoS One 8:e66939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyers SC, Adelman JS, Farine DR et al (2018) Feeder density enhances house finch disease transmission in experimental epidemics. Philos Trans R Soc B 373:20170090

    Google Scholar 

  • Mueller ME (1990) Respiratory herpesvirus infection with inclusion body conjunctivitis in Red-Cheeked Cordon-Blue (Uraeginthus bengalus). Avian Pathol 19:595–599

    CAS  PubMed  Google Scholar 

  • Mustaffa-Babjee AH (1969) Specific and non-specific conditions affecting avian eyes. Vet Bull 39:681–687

    Google Scholar 

  • Nijboer J (2019) Nutrition in passerines. https://www.msdvetmanual.com/management-and-nutrition/nutrition-exotic-and-zoo-animals/nutrition-in-passerines. Accessed 07/01/2020.

  • Nolan PM, Duckworth RA, Hill GE et al (2000) Maintenance of a captive flock of house finches free of infection by Mycoplasma gallisepticum. Avian Dis 44:948–952

    CAS  PubMed  Google Scholar 

  • Nollen PM, Murray HD (1978) Philophthalmus gralli: identification, growth characteristics, and treatment of an oriental eyefluke of birds introduced into the continental United States. J Parasitol 64:178–180

    CAS  PubMed  Google Scholar 

  • Oros J, Rodriguez F, Bravo C et al (1997) Debilitating cutaneous poxvirus infection in a Hodgson’s grandala (Grandala coelicolor). Avian Dis 41:481–483

    CAS  PubMed  Google Scholar 

  • Palade EA, Biro N, Dobos-Kovacs M et al (2008) Poxvirus infection in Hungarian great tits (Parus major): case report. Acta Vet Hung 56:539–546

    CAS  PubMed  Google Scholar 

  • Panigrahy B, Senne DA (1991) Diseases of mynahs. J Am Vet Med Assoc 199:378–381

    CAS  PubMed  Google Scholar 

  • Parenti E, Cerruti Sola S, Turilli C et al (2008) Spontaneous toxoplasmosis in canaries (serinus canaria) and other small passerine cage birds. Avian Pathol 15:183–197

    Google Scholar 

  • Paulman A, Lichensteiger CA, Kohrt LJ (2006) Outbreak of herpesviral conjunctivitis and respiratory disease in Gouldian Finches. Vet Pathol 43:963–970

    CAS  PubMed  Google Scholar 

  • Penner LR, Fried B (1963) Philophthalmus hegeneri sp. n., an ocular trematode from birds. J Parasitol 49:974–977

    CAS  PubMed  Google Scholar 

  • Penner LR, Trimble JJ (1970) Philophthalmus larsoni sp. n., an ocular trematode from birds. University of Connecticut Occasional Papers. Biological Science Series 1:265–273.

    Google Scholar 

  • Pennycott TW, Dare CM, Yavari CA et al (2005) Mycoplasma sturni and Mycoplasma gallisepticum in wild birds in Scotland. Vet Rec 156:513–515

    CAS  PubMed  Google Scholar 

  • Petrak (1969) Diseases of cage and aviary birds. Leo & Febiger, Philadelphia, Pennsylvania, pp 351–355

    Google Scholar 

  • Power DM, Human G (1974) A local occurrence of avian pox in the house finch. J Wildl Dis 10:262–263

    Google Scholar 

  • Quinn PJ (1971) Suspected case of bird pox in a small population of New Zealand pipits. Notornis 18:217

    Google Scholar 

  • Rainwater KL, Sykes JM, Sapienza JS (2015) Retrospective investigation of cataract management in avian species in a zoological collection. J Zoo Wildl Med 46:858–869

    PubMed  Google Scholar 

  • Rajaei SM, Mood MA, Khorram H et al (2015) Measurement of tear production using the phenol red thread test in the common mynah (Acridotheres tristis). J Avian Med Surg 29:146–148

    PubMed  Google Scholar 

  • Rauscher FG, Azmanis P, Korber N et al (2013) Optical coherence tomography as a diagnostic tool for retinal pathologies in avian ophthalmology. Invest Ophthalmol Vis Sci 54:8259–8269

    PubMed  Google Scholar 

  • Reymond L (1985) Spatial visual acuity of the eagle, Aquila audax: a behavioural, optical and anatomical investigation. Vis Res 25:1477–1491

    CAS  PubMed  Google Scholar 

  • Reymond L (1987) Spatial visual acuity of the falcon, Falco berigora: a behavioral, optical and anatomical investigation. Vis Res 27:1859–1874

    CAS  PubMed  Google Scholar 

  • Reynolds TL, Barnes HJ, Wolfe B, Lu L, Campe DM, Malarkey DE (2009) Bilateral nocardial endophthalmitis in a prothonotary warbler (Protonotaria citrea). Vet Pathol 46:120–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rochon-Duvigneaud A (1943) Les yeux et le vision des vertébrés. Masson, Paris

    Google Scholar 

  • Ronald KL, Fernandez-Juricic E, Lucas JR (2018) Mate choice in the eye and ear of the beholder? Female multimodal sensory configuration influences her preferences. Proc R Soc Lond B 285:20180713

    Google Scholar 

  • Rupley AE (1997) Common diseases and treatments. In: Manual of avian practice. WB Saunders, Philadelphia, pp 254–309

    Google Scholar 

  • Schemera B, Toro H, Kaleta EF et al (1987) A paramyxovirus of serotype 3 isolated from African and Australian finches. Avian Dis 31:921–925

    CAS  PubMed  Google Scholar 

  • Schmidt RE (1983) Hypermature cataract in a crested mynah, Leucopsar rothschildi. J Wildl Dis 19:158–159

    CAS  PubMed  Google Scholar 

  • Shivaprasad HL, Kim T, Tripathy D et al (2009) Unusual pathology of canary poxvirus infection associated with high mortality in young and adult breeder canaries (Serinus canaria). Avian Pathol 38:311–316

    CAS  PubMed  Google Scholar 

  • Siddall ME, Rood-Goldman R, Barrio A, Barboutis C (2013) The eyes have it: long-distance dispersal by an intraorbital leech parasite of birds. J Parasitol 99:1137–1139

    PubMed  Google Scholar 

  • Slatter DH, Bradley JS, Vale B et al (1983) Hereditary cataracts in canaries. J Am Vet Med Assoc 183:872–874

    CAS  PubMed  Google Scholar 

  • Slonaker JR (1897) A comparative study of the area of acute vision in vertebrates. J Morphol 13:445–493

    Google Scholar 

  • Staley M, Bonneaud C, Mcgraw KJ et al (2018) Detection of Mycoplasma gallisepticum in house finches (Haemorhous Mexicanus) from Arizona. Avian Dis 62:14–17

    PubMed  Google Scholar 

  • Sydenstricker KV, Dhondt AA, Ley DH et al (2005) Re-exposure of captive house finches that recovered from Mycoplasma gallisepticum infection. J Wildl Dis 41:326–333

    PubMed  Google Scholar 

  • Theil T, Whiteman NK, Tirape A et al (2005) Characterization of canarypox-like viruses infecting endemic birds in the Galapagos Islands. J Wildl Dis 41:342–353

    Google Scholar 

  • Thomason CA, Leon A, Kirkpatrick LT et al (2017) Eye of the finch: characterization of the ocular microbiome of house finches in relation to mycoplasmal conjunctivitis. Environ Microbiol 19:1439–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tikasingh ES, Worth CB, Spence L et al (1982) Avian pox in birds from Trinidad. J Wildl Dis 18:133–139

    CAS  PubMed  Google Scholar 

  • Tripathy DN, Hanson LE (1975) Avian pox. In: Hitchner SB (ed) Isolation and identification of avian pathogens. Arnold Printing, Ithaca, NY, p 282

    Google Scholar 

  • Troscianko J, von Bayern AMP, Chappell J et al (2012) Extreme binocular vision and a straight bill facilitate tool use in New Caledonian crows. Nat Commun 3:1110

    PubMed  Google Scholar 

  • Tsai SS, Park JH, Hirai K et al (1993) Eye lesions in pet birds. Avian Pathol 22:95–112

    CAS  PubMed  Google Scholar 

  • Tully JG (1996) Mollicute-host interrelationships: current concepts and diagnostic implications. In: Tully JG, Razin S (eds) Molecular and diagnostic procedures in mycoplasmology. Academic Press, San Diego, California, pp 1–21

    Google Scholar 

  • Tyrrell LP, Fernandez-Juricic E (2017) The hawk-eyed songbird: retinal morphology, eye shape, and visual fields in an aerial insectivore. Am Nat 189:709–717

    PubMed  Google Scholar 

  • Tyrrell LP, Moore BA, Loftis C et al (2013) Looking above the prairie: localized and upward acute vision in a native grassland bird. Sci Rep 3:3231

    PubMed  PubMed Central  Google Scholar 

  • Vickers MC, Hartley WJ, Mason RW et al (1992) Blindness associated with toxoplasmosis in Canaries. J Am Vet Med Assoc 200:1723–1725

    CAS  PubMed  Google Scholar 

  • von Bayern AM, Emery NJ (2009) Jackdaws respond to human attentional states and communicative cues in different contexts. Curr Biol 19:602–606

    Google Scholar 

  • Wellehan JF, Calsamiglia M, Ley DH et al (2001) Mycoplasmosis in captive crows and robins from Minnesota. J Wildl Dis 37:547–555

    CAS  PubMed  Google Scholar 

  • Westerskov K (1953) Bird pox in a New Zealand pipit. Notornis 5:168–170

    Google Scholar 

  • Williams D (1994) Ophthalmology. In: Richie BW, Harrison CJ (eds) Avian medicine: principles and practice. Wingers Publishing, Lake Worth (FL), pp 673–694

    Google Scholar 

  • Williams DL, Salter N (2017) Cataracts in corvids: health and welfare implications of lens opacification in a colony of western scrub-jays (Aphelocoma californica). Int J Avian Wildl Biol 2:28–32

    Google Scholar 

  • Williams SM, Fulton RM, Render J et al (2001) Ocular and encephalic toxoplasmosis in canaries. Avian Dis 45:262–267

    CAS  PubMed  Google Scholar 

  • Williams PD, Dobson AP, Dhondt KV et al (2014) Evidence of tradeoffs shaping virulence evolution in an emerging wildlife pathogen. J Evol Biol 27:1271–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis AM, Wilkie DA (1999) Avian ophthalmology, part 2: review of ophthalmic diseases. J Avian Med Surg 13:245–251

    Google Scholar 

  • Wood CA (1917) The fundus oculi of birds especially as viewed by the ophthalmoscope: a study in comparative anatomy and physiology. Lakeside, Chicago

    Google Scholar 

  • Zenoble RD (1986) Selected diseases of the head and face in caged birds. In: Johnston DE (ed) Exotic animal medicine in practice. Veterinary Learning Systems, Lawrenceville, NJ, pp 162–169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bret A. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moore, B.A., Fernandez-Juricic, E., Montiani-Ferreira, F. (2022). Ophthalmology of Passeriformes. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-71302-7_18

Download citation

Publish with us

Policies and ethics