SKNa 22

Stud Diode

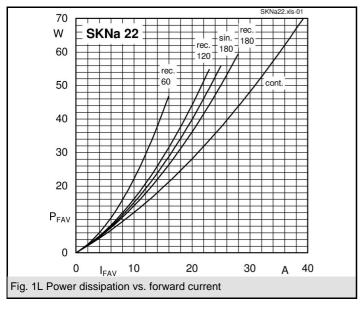
Avalanche Diode

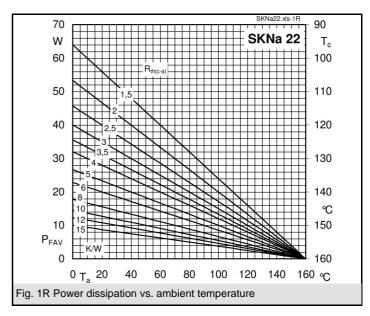
SKNa 22

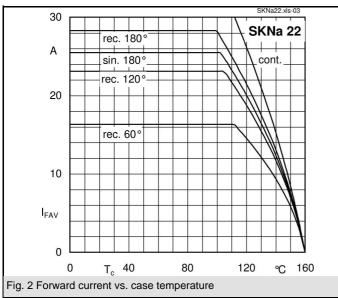
Publish Data

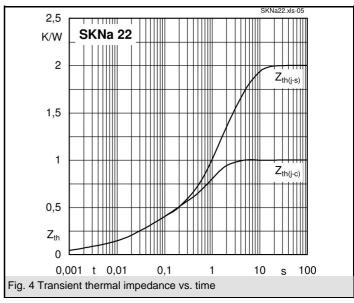
Features

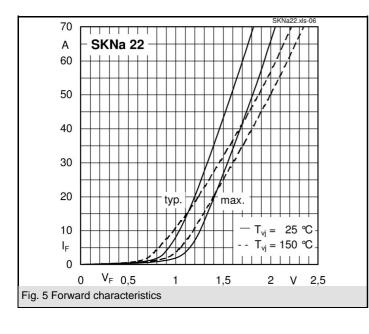
- Avalanche type reverse characteristic
- Reverse voltages up to 5000 V
- Hermetic metal case with ceramic insulator and extra long creepage distances
- Threaded stud ISO M6
- · Cooling via heatsinks
- SKN: Anode to stud

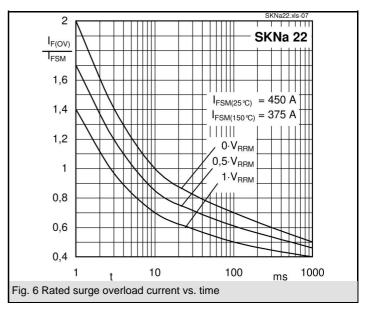

Typical Applications*

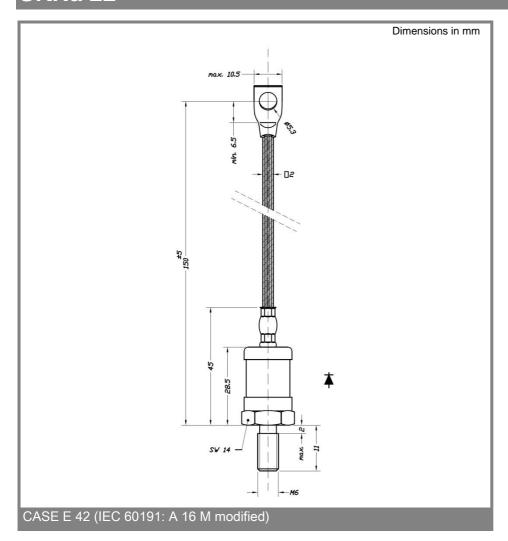

- High voltage rectifier diode for heavy duty applications
- Series connections for high voltage equipments like dust precipitators and high voltage power supplies
- Non-controllable and half-controllable rectifiers
- · Free-wheeling diodes


V _{(BR)min}	I _{FRMS} = 40 A (maximum value for continuous operation)	C _{max}	R _{min}
V	I _{FAV} = 25 A (sin. 180; T _c = 104 °C)	μF	Ω
3600	SKNa 22/36		
4000	SKNa 22/40		
4200	SKNa 22/42		
4500	SKNa 22/45		
4600	SKNa 22/46		
4800	SKNa 22/48		
5000	SKNa 22/50		


Symbol	Conditions	Values	Units
I _{FAV}	sin. 180 ; T _c = 104 (120) °C	25 (20)	Α
I _D	K 9; T _a = 45 °C; B2 / B6	16 / 23	Α
	K 3; T _a = 45 °C; B2 / B6	28 / 40	Α
I _{FSM}	T _{vj} = 25 °C; 10 ms	450	Α
	$T_{vj} = 160 ^{\circ}\text{C}; 10 \text{ms}$	375	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	1000	A²s
	$T_{vj} = 160 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	700	A²s
V _F	T _{vj} = 25 °C; I _F = 60 A	max. 1,95	V
$V_{(TO)}$	T _{vi} = 150 °C	max. 1	V
r _T	T _{vj} = 150 °C	max. 20	mΩ
I _{RD}	$T_{vj} = 25 ^{\circ}C; V_{RD} = V_{(BR)min}$	max. 300	μΑ
	$T_{vj} = 160 ^{\circ}\text{C}; V_{RD} = V_{(BR)min}$;	max. 3	mA
P _{RSM}	$T_{vj} = 160 ^{\circ}\text{C}; t_p = 10 \mu\text{s}$	10	kW
R _{th(j-c)}		1	K/W
R _{th(c-s)}		1	K/W
T_{v_j}		- 40 + 160	°C
T _{stg}		- 40 + 160	°C
V _{isol}		-	V~
M _s	to heatsink	2	Nm
		18	lb.in.
а		5 * 9,81	m/s²
m	approx.	25	g
Case		E 42	







^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.